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We study theoretically the mutual information between reflected and transmitted speckle patterns
produced by wave scattering from disordered media. The mutual information between the two speckle
images recorded on an array ofN detection points (pixels) takes the form of long-range intensity correlation
loops that we evaluate explicitly as a function of the disorder strength and the Thouless number g. Our
analysis, supported by extensive numerical simulations, reveals a competing effect of cross-sample and
surface spatial correlations. An optimal distance between pixels is proven to exist that enhances the mutual
information by a factor Ng compared to the single-pixel scenario.
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When waves propagate in complex environments, their
information content is spread out in space and encoded into
complicated speckle patterns, eventually recorded as two-
dimensional images at the output of the medium. A central
issue is the quantification of the information content in
speckle patterns, and its use for imaging, power deposit, or
information transfer [1–3]. Much effort has been made to
take advantage of the existence of spatial correlations in
speckles measured in transmission. Various schemes based
on the memory effect of short-range correlations (termed
CTT
1 hereafter) have been developed to image an object

through an opaque screen [4,5], while long-range correla-
tions (CTT

2 ), which capture nonlocal information, have been
demonstrated to be useful for increasing energy delivery
through turbid media [6,7].
Very recently, the existence of cross-correlations

between speckle patterns measured in reflection and trans-
mission has been demonstrated, and the shape of the
intensity correlation function has been characterized in
regimes ranging from quasiballistic to diffusive transport
[8,9]. These correlations suggest the possibility to acquire
information about a transmitted speckle from a measure-
ment restricted to the reflection half-space. This is of
crucial importance for sensing, imaging, and communicat-
ing through turbid media, and for the control of wave
transmission through disordered scattering environments
by wave front shaping techniques [1,2,10]. In this Letter,
we quantify the amount of mutual information (MI)
between transmitted and reflected speckles, and analyze
the dependance of the MI on the disorder strength and the
geometrical parameters characterizing the detection process
(number of detectors and their interdistance). Our theory is
formulated in terms of the transport mean free path
(independently of the details of the microstructure), and
applies for an arbitrary space dimension as long as the wave
propagation remains diffusive.

The scheme of the gedanken experiment is represented in
Fig. 1(a). A slab of a disordered medium is illuminated by a
planewave, and the speckle intensity profile is recordedwith
a CCD camera placed at the input side. The transmitted
speckle, potentially recorded with another camera, is
assumed to be unknown. Let IRi ¼ jEij2 be the reflected
intensity measured on pixel i (or detector i) and xi ¼
IRi =hIRi i be the normalized intensity, the brackets h� � �i
denoting an ensemble average over statistical realizations
of the disordered medium. The reflected speckle image is
represented by the vector x of sizeN equal to the number of
pixels of the camera. Similarly, the transmitted unknown
image is wrapped up into a vector y. In a statistical
description of the disordered medium, configurations of
disorder are generated by a stochastic process, and x and y
are random variables. A quantitative estimate of the stat-
istical dependence betweenx and y, or equivalently between
the two speckle images, is given by their MI, defined as the
difference between the entropy of x and y considered
separately and the entropy of the pair fx; yg [11]:

I ¼
ZZ

dxdypðx; yÞlog2
�

pðx; yÞ
pðxÞpðyÞ

�
: ð1Þ

Here, pðxÞ, pðyÞ, and pðx; yÞ are joint probability density
functions (PDFs). The MI is sensitive to all types of
statistical dependence, beyond that captured by correlations.
In particular, a vanishing MI is strictly equivalent to
statistical independence. Moreover, it provides a direct
connection with Shannon entropy and information theory
concepts. Note the important difference with the study of
channel capacity for multiple-input multiple-output proto-
cols, in which the MI between input and output signals is
evaluated [3,12–14]. Contrary to these protocols, here the
input signal is not random, there is no external noise, andx is
not the injected signal but the output signal in reflection.
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One difficulty in evaluating the MI lies in the fact that the
PDFs pðxÞ, pðyÞ, and pðx; yÞ are theoretically unknown.
Only marginal distributions, such as pðx1Þ and pðy1Þ, as
well as two-point correlations functions (CRR

ii0 ¼ hδxiδxi0 i,
CTT
jj0 ¼ hδyjδyj0 i, and CRT

ij ¼ hδxiδyji with δx ¼ x − 1 and
δy ¼ y − 1) have been calculated for disordered media
[9,15,16]. In the limit of small pairwise correlations,
however, we will show that I can be expressed as a
combination of the previous correlators only, even if the
field amplitudes Ei cannot be modeled as complex
Gaussian random variables.
First, we express pðx; yÞ in terms of pðxÞ and pðyÞ. This

joint PDF is entirely characterized by the set of correlators
hxfngyfmgi ¼ hxn11 � � � xnNN ym1

1 � � � ymN
N i. Since x and y are

weakly correlated in the multiple scattering regime [8,9],
we search for leading corrections to the independent variable
result hxfngyfmgi ¼ hxfngihyfmgi. To proceed, we represent
the field Ei as a sum of propagators along all possible
scattering trajectories S inside the medium, Ei ¼

P
SE

S
i .

Hence, each term xnii ∝ jEij2ni contains ni replica of
complex propagators ES

i and ES�
i . The leading correction

to the independent result involves all combinations of
correlations between two reflection propagators and
two transmission propagators. Counting these combina-
tions yields hxfngyfmgi ¼ hxfngihyfmgi þP

i;jn
2
i n

2
jhδxiδyji

hxfng−1iihyfmg−1ji, where the notation xfng−1i ¼
xn11 � � � xni−1i � � � xnNN is used. This expression gives the
moments of pðx; yÞ in terms of the moments of pðxÞ and
pðyÞ. Then, standard algebra, detailed in the Supplemental
Material [17], allows us to cast the joint PDF in the form
pðx; yÞ ¼ pðxÞpðyÞ½1þP

i;juijðx; yÞ� with

uijðx; yÞ ¼ hδxiδyji
∂xi ½xi∂xipðxÞ�

pðxÞ
∂yj ½yj∂yjpðyÞ�

pðyÞ : ð2Þ
Second, we insert the previous decomposition into

Eq. (1), and express the logarithm as a power series of

the correlation function
P

ijuijðx; yÞ. By keeping the first
nonzero term in the power expansion, we obtain the
following trace formula [17]:

I ≃ 1

2 ln 2
Tr½CRTC̄TTCRTC̄RR�: ð3Þ

In this expression we have introduced three N × N matri-
ces, with elements defined as CRT

ij ¼ hδxiδyji,

C̄TT
jj0 ¼

Z
dy

∂yj ½yj∂yjpðyÞ�∂yj0 ½yj0∂yj0pðyÞ�
pðyÞ ; ð4Þ

and C̄RR
ii0 in which pðyÞ is replaced by pðxÞ. Equation (3)

has a clear interpretation: the MI between the reflected and
transmitted speckle patterns is the sum of all correlation
loops ði → j → j0 → i0 → iÞ, as illustrated in Fig. 1(b). In
each loop, the correlation between pixels in different
images is carried by pairwise cross-sample long-range
coupling (CRT

ij and CRT
j0i0 ), whereas the correlations within

each image (C̄RR
i0i and C̄TT

jj0 ) are more complicated since they
are nonlocal, involving the full distributions pðxÞ and pðyÞ.
To make the interpretation of the trace formula (3) even

more transparent, we further assume that the distance
between pixels in each image is larger than the free-space
wavelength λ, so that correlations within each image remain
small. As detailed in the Supplemental Material [17], this
allows us to approximate the transmission PDF as
pðyÞ ¼ Q

kpðykÞ½1þ
P

j<j0 ujj0 ðyj; yj0 Þ�, where pðykÞ ¼
e−yk ½1þ CTT

2 ðy2=4 − yþ 1=2Þ�. Here, CTT
2 ≃ hðδyÞ2i − 1

is the leading non-Gaussian local correction to Rayleigh
statistics [25,26]. The reflection side PDF pðxÞ takes the
same functional form, with CRR

2 replacing CTT
2 . With this

simplification, the matrix elements (4) reduce to

C̄TT
jj0 ¼ ð1 − CTT

2 Þδjj0 − ð1 − 2CTT
2 Þhδyjδyj0 ið1 − δjj0 Þ: ð5Þ

This result is a first order expansion in CTT
2 that can be

generalized to higher order if needed, as discussed in the
Supplemental Material [17]. However, if we operate in a
regime where local corrections CTT

2 and CRR
2 are much

smaller than unity, we simply get C̄TT ¼ 1 − CTT and
C̄RR ¼ 1 − CRR, where the diagonal elements of the matri-
ces CTT and CRR are zero. In this case, the trace formula (3)
becomes

I ≃ 1

2 ln 2
Tr½ð1 − CTT − CRRÞðCRTÞ2�: ð6Þ

Hence, the existence of pairwise long-range correlations
inside each image tends to reduce the MI between the two
images compared to the result without surface correlation,
Tr½ðCRTÞ2�=2 ln 2 [see Fig. 1(c) for an illustration].
This means that long-range cross-sample correlations

(a)

(b)

(c)

FIG. 1. (a) Schematic view of a disordered slab illuminated by a
plane wave. The reflected speckle x produced at the sample
surface is registered on a CCD camera with N pixels, and its
mutual information I with the transmitted speckle y is evaluated.
(b) Diagrammatic representation of the trace formula (3) as a sum
of correlation loops. (c) Diagrammatic representation of the
approximation (6).
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and long-range surface correlations compete with each
other, suggesting that a balance can be found that max-
imizes the MI for certain geometrical configurations of
detectors. This effect is analyzed at the end of this Letter.
In order to validate the theoretical prediction (3) or its

approximation (6), we have performed numerical simula-
tions of wave propagation in two-dimensional (2D) dis-
ordered slabs with various thicknesses L and scattering
mean free paths l. Subwavelength dipole scatterers were
placed at random positions inside the slab, and the scalar
wave equation was solved numerically using the coupled-
dipole method [17]. For each set of parameters, M ¼ 108

disorder realizations were typically generated numerically,
and x and y were calculated at the sample input and output
surfaces, for various numbers N of detectors and inter-
distances a between detectors. Then, from the sets of data
fxα; yαgα¼1;…;M, an estimator of the MI was built, based on
entropy estimates from nearest neighbor distances [17,27].
Such an estimator is expected to be more accurate than
binning estimators—which consist in partitioning the sup-
port of x and y into bins—for which the bias potentially
grows exponentially with the dimension N of x and y [28].
Let us first analyze the simplest situation where a single

pair of detection points is considered (N ¼ 1). The
approximation (6) takes the simple form I ≃ CRTðΔrÞ2=
2 ln 2, where Δr is the transverse distance between the
detection points placed on both sides of the sample. As
shown in Fig. 2(a), this prediction agrees well with the
direct estimate of Eq. (1), proving that the MI between x
and y essentially boils down to the square of their
correlation function CRT for N ¼ 1. In the multiple scatter-
ing regime (kL ≫ kl ≫ 1 with k ¼ 2π=λ) CRT is trans-
ported along diffusive paths exploring a transverse distance
∼L [9], and the MI is vanishingly small for Δr≳ L.
For a larger number of detectors (N > 1), the behavior of

the MI becomes more complex. Let us analyze its

dependence on the interdistance a between detectors.
Results corresponding to samples with two different
thicknesses L are presented in Fig. 2(b). Here, also we
obtain very good agreement between numerical estimates
and the trace formula (3) completed by Eq. (5), in which the
values of correlators have been obtained from simulations.
This confirms that the MI in multiple scattering environ-
ments can be computed from the combination of pairwise
correlators only. We distinguish three regimes in Fig. 2(b)
that can be interpreted by means of the approximation (6).
For detector spacing a larger than the extent L of CRTðΔrÞ,
the MI is driven by detectors placed in front of each other
only. Thus, it is independent of a and N times larger than
the MI obtained with a single pair of detectors with Δr ¼ 0
[see Fig. 2(a)]. When a is progressively reduced, the MI
starts to increase since more and more pairwise cross-
sample correlations get activated. In the absence of corre-
lations between the various components of x or y, this
increase would hold for arbitrary small spacing a. However,
we observe that the MI reaches a maximum for a certain
critical spacing below which it falls down, thereby
revealing the effect of surface correlations. The latter
contain both short-range and long-range contributions
[15]. Short-range contributions, responsible for the size λ
of speckle spots, explain the convergence of the MI towards
its N ¼ 1 limit when a ≪ λ. Indeed, the MI cannot be
increased by adding detectors located in the same speckle
spot. Nevertheless, a qualitative analysis of Eq. (6) only
does not allow us to infer which contribution triggers the
value of the critical distance, and to explain why the MI is
globally reduced when the thickness of the medium
increases.
To clarify these observations, we studied the dependence

of the correlators CRTðΔrÞ, CTTðΔrÞ, and CRRðΔrÞ on L
and l (in the regime kL ≫ kl ≫ 1). Simulation results for
plane wave illumination and various sets of parameters

(a) (b)

FIG. 2. MI as a function of distances between detectors. The theoretical prediction (3) (lines) is compared to the numerical estimation
(dots) for various numbers of detectors N, thicknesses L, and mean free paths l. (a) MI between the intensities measured in reflection
(x ¼ IR=hIRi) and transmission (y ¼ IT=hITi) versus transverse distance Δr. Parameters in the simulation: kL ¼ 30, kl ¼ 10. (b) MI
between two sets of N ¼ 5 detectors versus detector spacing a, for two thicknesses kL ¼ 30 (solid line) and kL ¼ 80 (dashed line), and
fixed kl ¼ 10. The constant residual biases in the numerical estimates (dots) have been removed, according to the procedure detailed in
the Supplemental Material [17]. Note that the agreement between simulations and theory for ka ≲ 1 can only be qualitative since the
hypothesis of weak surface correlations is not fully satisfied.

PHYSICAL REVIEW LETTERS 120, 073901 (2018)

073901-3



fkL; klg are shown in Fig. 3. When properly normalized,
data points collapse on single curves, suggesting the
following scalings: CRTðΔrÞ ¼ −f1ðΔr=LÞ=ðkLÞd−1 for
all Δr, and CTTðΔrÞ ¼ ðL=lÞf2ðΔr=LÞ=ðkLÞd−1 and
CRRðΔrÞ ¼ −f3ðΔr=lÞ=ðklÞd−1 for Δr≳ l. Here, f1,
f2, and f3 are three positive decaying functions of range
and amplitude close to unity, and d is the space dimension.
Theoretical justifications for these scalings are given in the
Supplemental Material [17]. Note that, contrary to the well-
established behavior of the long-range component of CTT ,
CRT andCRR do not scale as ∼1=g, where g ¼ klðkLÞd−2 is
the Thouless number of a box of size L [29–31]. In
particular, CRT is independent of l. This means that our
initial assumption of weak reflection-transmission correla-
tion is a priori robust against mechanisms affecting the
transport mean free path, such as structural correlation of
the medium [32–34], or near-field coupling between
scatterers in dense materials [35–37]. We also point out
that the long-range component of CRR is negative, extend-
ing over a few mean free paths because waves explore such
a distance in the transverse direction before being reflected
[38,39]. Finally, for practical calculations, it is instructive to
note that the functions f1, f2, and f3 are reasonably well
fitted by a Gaussian and two exponentials (see Fig. 3).
The simple scaling forms of the three correlators allow us

to push forward the analytic calculation of the trace
formula (3), in particular in the interesting limit of a large
number of detectors (N ≫ 1). As CRT , CTT , and CRR are
Toeplitz-type matrices, we may use an extension of Szegö’s
theorem to evaluate the trace for arbitrary spacing a [40].
To simplify the discussion, we focus on the situation where
detectors (pixels) are equally spaced in all directions on the
surface, in the regime l≲ a ≪ L (see the Supplemental
Material [17] for a study in the general case). In this regime,
the contribution of CRR is negligible, and the remaining
sums over indices in the development of the trace of the
matrix product can be replaced by space integrals on the
surface. The approximation (6) becomes [17]

I ≃ N
2 ln 2½ðkLÞðkaÞ�d−1

�
cRT −

cTT
ðkaÞd−1

L
l

�
; ð7Þ

where cRT ¼ R
drf1ðrÞ2 and cTT ¼ ∬ drdr0f1ðrÞf2ðr0Þ×

f1ðjrþ r0jÞ are two numerical constants of order unity. The
result in Eq. (7) supports previous qualitative observations:
the MI scales linearly with the number of detectors,
and decreases when the sample thickness increases because
the cross-sample correlation CRT itself is reduced.
Interestingly, when we normalize Eq. (7) by the MI
measured for a single detector I1 ¼ CRTð0Þ2=2 ln 2, we
obtain I=I1 ∝ NðcRTu − cTTu2=gÞ, where u ¼ ðL=aÞd−1.
This shows that I exhibits a maximum triggered by the
long-range component of CTT , of the form Imax ∼ NgI1,
for a critical interdistance a� much larger than the wave-
length and potentially larger than l [ðL=a�Þd−1 ¼
ðcRT=2cTTÞg so that a� ∼ λðL=lÞ1=ðd−1Þ]. Hence, the MI
for an array of N detectors with optimized interdistance is
enhanced by a factor Ng ≫ 1 compared to the MI for a
single detector. These considerations are confirmed in
Fig. 4 by the good agreement between the numerical

(a) (b) (c)

FIG. 3. Scaling of the three correlation functions that are building blocks of the MI: (a) CRTðΔrÞ, (b) CTTðΔrÞ, and (c) CRRðΔrÞ.
Numerical results (dots) were obtained by solving the wave equation in 2D, for different values of L and l (see inset). Gaussian
contributions (CTT

1 and CRR
1 ), which are short range, have been removed for clarity. Dashed lines are simple fitting functions for Δr ≳ l

[Gaussian in (a) and exponentials in (b) and (c)].

FIG. 4. MI computed from the trace formula (6). Open circles
are numerical calculations of the trace, using the scaling functions
for CRT, CTT , and CRR identified in Fig. 3. Solid lines stand for
the analytic result presented in the Supplemental Material [17],
and dashed lines for its approximation (7) valid for l≲ a≲ L.
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evaluation of the trace (6) and the full analytic prediction
detailed in the Supplemental Material [17] and its approxi-
mation (7). In particular, denoting by I∞ ¼ NI1 the MI
obtained in the large spacing regime a≳ L where only
front side correlations contribute, we clearly observe the
enhancement factor Imax=I∞ ∼ g.
In summary, we have presented a quantitative treatment

of the MI between two speckle images produced on
opposite sides of a multiple scattering medium. The
dependence of the MI on length scales characterizing the
medium and on the detection geometry highlights the
entangled and competitive contributions of long-range
intensity correlations. In particular, using an array of N
detectors with interdistance a to record the speckle image,
the MI can be increased by a factor of Ng compared to the
single detector case for a critical value of a ≫ λ. This
enhancement factor could guide the development of exper-
imental protocols to measure the MI, in configurations such
as that in Ref. [9] for which Ng can be made very large.
Although our approach does not give the recipe to recover
from x the information contained in y, or vice versa, it
provides quantitative estimates of the MI, and conditions
for its optimization, that should help the design of new
setups dedicated to information recovery or transfer in
complex media.
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