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We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid
phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes
for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in
the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By
tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to
the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density
critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone
mode are responsible for a full suppression of the condensate density oscillations. Possible detection
protocols are also discussed.
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Introduction.—Ultracold atoms in optical lattices pro-
vide an ideal platform to explore the properties of strongly
interacting lattice systems. A prominent example of their
capability to reproduce prototypical lattice Hamiltonians is
given by the experimental realization of the Bose-Hubbard
model [1–7]. Indeed, the superfluid to Mott insulator
transition has been characterized at a very high level of
accuracy, exhibiting an excellent agreement between
experiments and theoretical predictions at zero [5,8–11]
and finite temperature [12–16]. The ground-state properties
of the Bose-Hubbard model have been thoroughly inves-
tigated through time-of-flight imaging [5], measure of
noise correlations [17], and single-site microscopy [18].
Excitations have been also addressed through tilting of the
lattice [5], Bragg spectroscopy [19], and lattice depth
modulation [8].
A very intriguing feature of the Bose-Hubbard model is

the existence of a strongly interacting superfluid phase.
With respect to a weakly interacting superfluid, a clear
distinctive property of the superfluid close to the Mott lobes
is the strong particle or hole character of the phonons. A
further signature of strong correlations is the existence of
gapped modes [20–23], in contrast to the weakly interact-
ing limit, where the gapless Goldstone mode exhausts all of
the spectral weight. The measurement of the first gapped
mode in the short wavelength limit using Bragg spectros-
copy [24] and in the large wavelength limit using lattice
modulation [25] has been recently reported. When the first
gapped mode consists of a pure amplitude oscillation of the
superfluid order parameter [26–32], it is granted the label of
Higgs mode, in analogy with the Higgs boson in particle
physics [23].

A pure amplitude mode, decoupled from the phononic
phase mode, has been predicted to exist when the Bose-
Hubbard model is effectively described by a relativistic
Oð2Þ field theory, since an effective particle-hole symmetry
ensures Lorentz invariance and the resulting decoupling
of phase and amplitude degrees of freedom [20,28,33,34].
This Oð2Þ theory describes both the vicinity of the critical
point of the superfluid to Mott transition at integer filling
in dimensions d ≥ 2 and hard-core bosons at half-integer
filling [35]. An important issue regards the fate of the Higgs
mode away from criticality and towards the weakly
interacting regime [23]. To the best of our knowledge,
no clear answer about this question has been provided yet.
In this Letter, we find an emergent particle-hole sym-

metry for the first gapped mode on a curve connecting two
Lorentz-invariant points of the model, starting from the tip
of the insulating lobes. This result relies on higher-energy
excitations and provides an answer to the long-standing
debate about the conditions of existence of a pure-
amplitude Higgs mode in the Bose-Hubbard model away
from criticality. Moreover, we show that a distinct particle-
hole symmetry condition for the gapless Goldstone mode
produces a suppression of the condensate density oscil-
lations in proximity of the Mott lobes and, specifically, in
correspondence to the boundary between particle and hole
superfluidity. We speculate that such a suppression may be
responsible for an increase in the critical temperature of the
normal to superfluid transition.
Model and theory.—We consider bosonic particles in a

d-dimensional square lattice described by the Bose-
Hubbard model
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where J is the hopping amplitude,U the on-site interaction,
μ the chemical potential, and hi; ji represents all pairs of
nearest-neighboring sites. For large enough dimensions,
e.g., d ¼ 3, it is appropriate to study the excitations of the
system by means of a time-dependent Gutzwiller ansatz
jϕi ¼ Q

i

P
n ci;nðtÞjnii. The coefficients ci;nðtÞ satisfy

the equations of motion obtained from the Lagrangian
L½c; c��≡ iℏ

P
i;nc

�
i;n∂tci;n − hHi. We define ci;nðtÞ ¼

½c̄n þ δci;nðtÞ�e−iω0t [36–38], where c̄n are the ground state
parameters, ω0 describes the time dependence at equilib-
rium, and δci;nðtÞ are the small oscillations with respect to
the equilibrium configuration. Linearizing the equations of
motion with respect to δci;nðtÞ and introducing the ansatz
δci;nðtÞ ¼ uk;neiðk·ri−ωktÞ þ vk;ne−iðk·ri−ωktÞ, one obtains
Bogoliubov-like equations for the coefficient uk;n and
vk;n, which can be chosen to be real. To describe the
excitations above the ground state, we select the solutions
at positive energy ωk;λ > 0, where λ ¼ 1; 2;… identifies
the different branches of the spectrum. The corresponding
eigenvectors satisfy u⃗k;λ · u⃗k;λ0 − v⃗k;λ · v⃗k;λ0 ¼ εδλ;λ0, with
ε > 0. For practical convenience, we take ε ¼ 1.
Given a certain observable A, an excitation λ produces

a perturbation with respect to the ground state value
δAλ ¼ hAiλ − Ā, which we consider up to linear order in
δci;n. For the order parameter ψ i ¼ haii, this reads

δψ i;λ ¼ Uk;λeiðk·ri−ωk;λtÞ þ Vk;λe−iðk·ri−ωk;λtÞ; ð2Þ
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The quantities jUk;λj2 and jVk;λj2 are the quasiparticle and
quasihole excitation strengths, respectively [37,38].
Particle-hole symmetry.—For each mode and momen-

tum, we define particle-hole symmetry the condition
jUk;λj ¼ jVk;λj, identified by the zeros of the function
C ¼ ðjUk;λj − jVk;λjÞ/ðjUk;λj þ jVk;λjÞ [39]. To understand
the existence of lines of particle-hole symmetry, it is helpful
to recall how the excitations in the Mott phase evolve
into the phononic and gapped modes of the strongly
interacting superfluid [22]. In the weakly interacting
Bogoliubov regime, phonons present a strong particle
and hole admixture. In contrast, close to the Mott lobes,
the phononic excitations of the strongly interacting super-
fluid inherit the pure particle or hole character of the
Mott excitation that becomes gapless at the transition
[see Fig. 1(a)]. For negative (positive) doping with
respect to integer filling, phononic excitations of the
strongly interacting superfluid appear with jVk;1j ≫ jUk;1j
(jUk;1j ≫ jVk;1j), indicating dominant hole (particle)
character [see Figs. 1(b)–1(c), respectively]. At negative
(positive) doping, the second lowest Mott excitation is
gapped at the transition and is transformed into the first
gapped mode of the superfluid phase, which conversely has
particle (hole) character jUk;2j ≫ jVk;2j (jVk;2j ≫ jUk;2j)
[see Figs. 1(b)–1(c), respectively].
It is instructive to realize that also higher excited modes

inherit their particle-hole character from underlying pure
m-particle and m-hole excitations [see Fig. 1(d)]. The

FIG. 1. (a) Mean-field phase diagram of the Bose-Hubbard model in d ¼ 3 dimensions: thick lines are the Mott lobes. Single-particle
(-hole) excitations in the Mott phase are indicated by the green (orange) arrows. Dashed, solid, and dashed-dotted gray arcs indicate the
condition of particle-hole symmetry C ¼ 0 at k ≈ 0 for the Goldstone, first and second gapped modes, respectively. (b), (c) Lowest
bands for k ¼ kx ¼ ky ¼ kz as a function of dJ/U for μ/U ¼ 0.2 (b) and μ/U ¼ 0.8 (c) [see horizontal dotted lines in (a)]. The vertical
dashed line indicates the phase transition. Inset in (b): Excitation spectrum as a function of k/π in the strongly interacting superfluid at
dJ/U ¼ 0.08 and μ/U ¼ 0.2 [star in (a)] compared with the excitation spectrum in the Mott phase at dJ/U ¼ 0.04 and μ/U ¼ 0.2 (dotted
lines). In all figures, color code indicates the value of C, quantifying the particle-hole character for each mode. Particle-hole symmetry is
found when C ¼ 0. (d) Gray dotted lines �mμ/U are the m-holes (or m-particles) excitation energies in the Mott phase at J ¼ 0. Thick
lines: Excitation energies ℏωk;λ/U for modes λ ¼ 1…4 at k ¼ π/100 along the vertical dotted line in (a), namely, as a function of μ/U for
dJ/U ¼ 0.08. The points of particle-hole symmetry are highlighted by the red dots [see also (a)].
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energy crossing between such excitations turn into anti-
crossings due to the coupling introduced by a nonvanishing
order parameter in the superfluid phase. The dominant
particle or hole character from the underlying modes is
retained, except in the vicinity of the anticrossing points,
where hybridization leads to a point of perfect particle-hole
symmetry for each mode. In the weakly interacting regime
all excitations become particle dominated. Hence, the
regions of dominant hole character are confined in the
strongly interacting superfluid regime and bounded by a
line of perfect particle-hole symmetry [C ¼ 0, see gray
curves in Fig. 1(a)]. This picture highlights the role played
by energetically close excitations in determining the
particle-hole symmetry condition for the different modes.
In particular, the idea of particle-hole symmetry arising
close to energy level crossings explains why particle-hole
symmetry is recovered for all modes in the vicinity of the
tip of the lobes (μ/U close to half-integer values) and at
very small J/U and half-integer filling (μ/U close to integer
values) [see Figs. 1(a) and 1(d)].
In the following, we are going to discuss how in-phase

and out-of phase oscillations of the order parameter (namely,
the relative sign of Uk;λ and Vk;λ) at the particle-hole
symmetry condition determine profoundly different physical
properties of the two lowest-lying excitations [40].
Pure amplitude (Higgs) mode.—A long-standing debate

has taken place about the conditions for the existence of a
gapped mode in the Bose-Hubbard model and its inter-
pretation as a pure amplitude oscillation of the superfluid
order parameter [23]. Because of this sought-after property,
the first gapped mode is often referred to as the Higgs
mode. Within the linear approximation [see Eq. (2)], pure
amplitude oscillations of the order paramenter ψ i;λ are
found when the imaginary part of δψ i;λ vanishes, namely,
when Ik;λ ¼ Uk;λ − Vk;λ ¼ 0. Conversely, vanishing real
part (Rk;λ ¼ Uk;λ þ Vk;λ ¼ 0) corresponds to pure phase
excitations of the order parameter. To quantify the ampli-
tude and phase components of the oscillations of the order
parameter in any mode λ, it is useful to define the flatness
parameter

Fk;λ ¼
Rk;λ − Ik;λ

Rk;λ þ Ik;λ
∈ ½−1; 1�: ð4Þ

A positive flatness indicates a mode with dominant
amplitude character and a negative flatness indicates a
mode with dominant phase character.
In Fig. 2(a), we show the flatness of the first gapped

mode (λ ¼ 2) at small momentum k ≈ 0. This mode
becomes purely amplitudelike (Fk;2 ¼ 1) on the bright
yellow curve in the ðμ/U; J/UÞ phase diagram. The pure
amplitude Higgs mode emerges at the tip of each Mott lobe,
where it is indeed expected to exist, but quickly moves
towards larger fillings as J/U increases and bends back
towards J/U → 0 and μ/U integer. This behavior confirms

the expectations based on Fig. 1 and related discussion. We
stress that the initial and final point of the curve Ik;λ ¼ 0

are Lorentz invariant points of the model.
Let us now define the density oscillations

δni;λ ¼ 2N k;λ cosðk · ri − ωk;λtÞ; ð5Þ

withN k;λ ¼
P

nc̄nnðuðλÞk;n þ vðλÞk;nÞ. In correspondence of the
particle-hole symmetry condition Ik;λ ¼ 0, the continuity
equation yields N k;λ ¼ 0, as confirmed by our calculations
[see Figs. 2(b) and 2(c)]. This property identifies the pure
amplitude character of a mode λ with an exchange of
particles between the condensate and the normal fraction.
It is important to note that the pure amplitude character

of the first gapped mode is obtained on slightly different
curves depending on the momentum of the excitations.
Moreover, the density response is significant only in the
short wavelength limit and it is suppressed for k → 0 [see
Figs. 2(b) and 2(c)]. These facts should be taken into
account when looking for the Higgs mode in possible
experiments [24].
Suppression of condensate density oscillations in the

Goldstone mode.—Particle and hole excitations of equal
amplitude but opposite sign (Rk;λ ¼ Uk;λ þ Vk;λ ¼ 0) [41]
directly imply vanishing condensate density oscillations

δρc;i;λ ¼ δjψ i;λj2 ¼ 2Pk;λ cosðk · ri − ωk;λtÞ; ð6Þ

with Pk;λ ¼ ψ̄ðUk;λ þ Vk;λÞ. Vanishing condensate density
oscillations are found on arc-shaped lines in the phase
diagram in the vicinity of, and in particular, below each
Mott lobe [dark blue curves in Fig. 3(a)]. The suppression of

(b)

(c)

(a)

FIG. 2. (a) Flatness Fk;2 for the first gapped mode (λ ¼ 2) as a
function of dJ/U and μ/U for k ¼ kx ¼ ky ¼ kz ¼ π/100; the
bright yellow curves are the points where this mode corresponds
to pure amplitude oscillation of the order parameter. As a
reference, the white lines indicate the Mott to superfluid phase
boundaries. (b) Density oscillation N k;2 as a function of μ/U for
fixed dJ/U ¼ 0.0858, corresponding to the tip of the lobe. (c) As
in (b) for dJ/U ¼ 0.115. Purple to light blue line color indicates k
varying from 0 to π. Vertical dashed lines highlight the zeros of
N k;2 at k ≈ 0 [see (a)].
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δρc for mode λ ¼ 1 occurs for distinct values k on slightly
different curves, which all lie above half-integer filling and
end in the vicinity of the tip of the lobe [see Figs. 3(b)
and 3(c)]. Consistently, it will never be possible to satisfy the
condition R ¼ 0 in the weakly interacting limit, where the
Goldstone mode alone exhausts the spectral function sum
rule jUk;1j2 − jVk;1j2 ¼ 1.
In the superfluid hydrodynamic regime, the condensate

density oscillations of the Goldstone mode at low momenta
couple only to the density oscillations δρc ¼ ð∂ρc/∂nÞJδn.
This equality has been numerically verified by independ-
ently calculating the oscillations δρc, δn at k ≈ 0 from
Eqs. (5), (6) and the quantity ∂ρc/∂n in the ground state.
Hence, the condensate density oscillations at k ≈ 0 vanish
in correspondence of the maxima and the minima of the
condensate density at constant J [see thick purple and
dashed curves in Figs. 3(b) and 3(c)].
Remarkably, the suppression of condensate density

oscillations at k ≈ 0 occurs at the boundary between
particle and hole superfluidity, usually defined as
ð∂μ/∂JÞn ¼ 0 [38]. Indeed, the mean-field free energy
per site Ω depends on the condensate density as Ω ¼
−zJρc þ � � �, where z ¼ 2d is the coordination number
in a hypercubic lattice. Using the thermodynamic relations
μ ¼ ð∂Ω/∂nÞJ and ρc ¼ −ð1/zÞð∂Ω/∂JÞn, we obtain
ð∂μ/∂JÞn ¼ −zð∂ρc/∂nÞJ.
Particularly interesting are the maximum of condensate

density and the absence of condensate fluctuations found
on the lower branch of each R ¼ 0 curve in Fig. 3(a). This
suggests the presence of a condensate that is extremely
robust against thermal fluctuations for temperatures smaller
than the Goldstone mode bandwidth and, as a possible
consequence, an increase of the normal to superfluid
critical temperature. This conjecture is supported by a
qualitative comparison with quantum Monte Carlo results

[15] showing the critical temperature as a function of
density at fixed J/U. In Ref. [15], for small J and filling
smaller than unity, a maximum of critical temperature is
found above half-integer filling, in apparent agreement with
the particle-hole symmetry condition R ¼ 0 found in this
work. Moreover, the fact that the maximum of the critical
temperature found in Ref. [15] is of the order of the
hopping amplitude, namely, according to our calculation,
smaller than the Goldstone mode bandwidth, validates an
estimation of the critical temperature based on the thermal
occupation of the Goldstone mode only. In this respect, the
microscopic nature of the lowest-lying excitations and in
particular their particle-hole symmetry seems to play a
crucial role. From a broader perspective, these findings may
be relevant to understand the influence of Mott physics
(Mottness) on the low-temperature phase diagram of
cuprates [42]. Indeed, recent experiments have shown
that—among other effects [43]—at the optimal doping
corresponding to the maximum of the superconducting
dome, a transition from hole to particle transport [44] and a
change in the charge transfer process [45,46] occur.
Discussion.—The unambiguous detection of particle-

hole symmetry in the excitations of a strongly interacting
superfluid requires us to independently resolve the ampli-
tude and phase oscillations of the order parameter, or in
other words, to reconstruct the single-particle Green’s
function in the laboratory. Pioneering experiments in this
direction have been performed in the early days of Bose-
Einstein condensation with two-pulse Bragg spectroscopy
[47,48]. One can also consider more sophisticated exper-
imental techniques that are presently being developed,
namely, ARPES-like schemes [49,50], or higher band
Bragg spectroscopy [51]. Proposals of lattice-assisted
spectroscopy to emulate scanning tunneling microscopy
in ultracold atomic setups [52] and energy-resolved atomic
scanning probes for the density of states [53] have also been
recently put forward. Beyond ultracold atom realizations,
Higgs and Goldstone modes may appear in hybrid systems
coupling Bose-Einstein condensates to optical cavities [54].
A more speculative possibility of quantum simulating the
collective modes in the Bose-Hubbard model is offered by
arrays of strongly nonlinear optical or circuit-QED reso-
nators [55–57], inspired by the recent realization of Mott
insulator states of light [58]. In such optical systems, the
full statistics of the quantum field is, in fact, directly
accessible from a photoluminescence experiment [59].
Conclusions.—In this Letter, we have discussed the

emergent particle-hole symmetry of the low-energy exci-
tations in the homogeneous Bose-Hubbard model. For the
Goldstone mode, particle-hole symmetry induces a sup-
pression of condensate density oscillations at the boundary
between hole and particle superfluidity and a possible
consequent increase of the normal to superfluid critical
temperature. Most remarkably, particle-hole symmetry also
allows us to predict a gapped pure-amplitude Higgs mode

a

n = 1.0n = 0.9n = 0.8

n = 0.5

(a)

n = 1.0n = 0.9n = 0.8

n = 0.5

(b)

(c)

FIG. 3. (a) Amplitude of the condensate density fluctuations
Pk;1 for the Goldstone mode (λ ¼ 1) as a function of dJ/U and
μ/U for k ¼ kx ¼ ky ¼ kz ¼ π/100; constant density n̄ ¼ 0.5,
0.8, 0.9, 1 contours (white lines). (b) Pk;1 as a function of μ/U for
fixed dJ/U ¼ 0.0858, corresponding to the tip of the lobe. (c) As
in (b) for dJ/U ¼ 0.115. Purple to light blue line color indicates k
varying from 0 to π. Gray dashed lines show the condensate
density ρc in the ground state.
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on a curve connecting the integer-density critical point (tip
of the lobe) and the hard-core limit at half-integer density.
The particle-hole symmetry condition is met in the

strongly interacting superfluid when an excitation arising
from the Mott phase with predominant hole character
acquires the predominant particle character typical of the
weakly interacting limit. In this sense, particle-hole sym-
metry relies on very general and fundamental properties of
single-particle excitations. Future studies could be devoted to
understand the impact of quantum corrections. On one hand,
the development of a quantized theory for the excitations
would allow one to investigate the effect of quantum and
thermal fluctuations, to address the lifetime of the different
excitation modes, and to explore finite temperature physics.
On the other hand, a whole new interesting regime is
expected to arise when decreasing the dimensionality of
the optical lattice. In this respect, since the single-site
Gutzwiller approximation used in this work is not reliable
in systems with a small coordination number, an improve-
ment of our theory could be given by a cluster Gutzwiller
approach [25,60], which accounts for short-range quantum
correlations also in two-dimensional lattices.
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