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By studying the coarsening dynamics of a one-dimensional spin-1 Bose-Hubbard model in a superfluid
regime, we analytically find an unconventional universal dynamical scaling for the growth of the spin
correlation length, which is characterized by the exponential integral unlike the conventional power law or
simple logarithmic behavior, and numerically confirmed with the truncated Wigner approximation.
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Introduction.—Coarsening is relaxation dynamics fol-
lowing a sudden change in a system’s parameter across a
phase transition point. It has been studied in diverse
classical systems of immense practical and fundamental
importance, such as magnetization processes, metal
alloying, mixing of binary liquids, and nucleation in the
gas-liquid transition [1,2]. The notable feature of coarsen-
ing is the dynamical scaling Cðr; tÞ ¼ f(r=LcðtÞ), which
means that the correlation function Cðr; tÞ is characterized
by a single length scale, namely the correlation length LcðtÞ
with a universal function fðxÞ. The time dependence of
LcðtÞ classifies coarsening dynamics in various open
dissipative systems described by, e.g., Ginzburg-Landau
or Cahn-Hilliard equations into several universality classes
that depend on fundamental properties of systems such as
spatial dimensions and symmetries.
Recently, the relaxation dynamics including coarsening

has attracted considerable attention in ultracold atomic
gases which emerge as an ideal platform for studying
nonequilibrium statistical mechanics in isolated quantum
systems [3–5]. Indeed, over the last decade, many theo-
retical and experimental studies have uncovered a rich
variety of relaxation phenomena in isolated quantum
systems such as prethermalization [6,7], many-body locali-
zation [5,8–10], transport dynamics [11–14], and the
Kibble-Zurek mechanism (KZM) [15–18].
Then the following question naturally arises: Are there

any unconventional universality classes unique to isolated
coarsening dynamics? Recently, coarsening dynamics in
two-dimensional (2D) and three-dimensional (3D) multi-
component Bose-Einstein condensates (BECs) have been
investigated [19–27], which turn out to belong to the same
conventional classes as in open dissipative systems such
as the classical binary liquid and the planar spin model
[20,21,23,24,27]. As for the 2D coarsening dynamics with
domains, this is due to the fact that the curvature and the
inertia are the main driving forces promoting the coarsen-
ing both for 2D BECs and 2D classical binary liquids. In

binary liquids, these forces overcome the effect of the
dissipation in an inertial hydrodynamic regime, and the
system effectively behaves as an isolated system, showing
the characteristic power law LcðtÞ ∝ t2=3. The previous
works for the 2D BECs [20,21,23,24,27] confirmed this
conventional universality class. Thus, it is still open
whether the universality unique to isolated systems exists.
In this Letter, we theoretically investigate a one-

dimensional (1D) spin-1 Bose-Hubbard (BH) model to
demonstrate that the 1D isolated quantum system exhibits
coarsening dynamics that belongs to an unconventional
universality class. Unlike 2D and 3D systems, the curvature
and the torsion of domain walls are absent in 1D systems,
so that a 1D domain-wall interaction is generally weak.
In open dissipative systems, such a genuine interaction
between 1D topological objects is masked by the effect of
dissipation [28]; however, in 1D isolated systems it should
become significant. More specifically, while a single 1D
domain-wall pair is known to contract by itself in open
dissipative systems [29,30], we find that in an isolated
system, such a pair undergoes a linear uniform motion
without self-contraction. Based on this physical intuition,
we obtain an analytical expression of LcðtÞ characterized
by an exponential integral, and numerically confirm it on
the basis of the truncated Wigner approximation (TWA).
This behavior is distinct from any power law or simple
logarithmic behavior found in open dissipative 1D systems
[31–37], and attributed to the genuine interaction between
the topological objects under energy conservation and to
the absence of the curvature and torsion of a domain wall.
Thus, the universality class found here is unique to 1D
isolated systems.
Some comments on previous related studies are in order

here. The 1D domain-wall dynamics have been investigated
numerically and experimentally in multicomponent BECs,
where short-time domain dynamics and the KZM have
been discussed [38–44]. However, universal coarsening
behaviors such as a dynamical scaling have not been
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addressed. In contrast to the long-time coarsening dynam-
ics, Nicklas et al. have focused on the short-time dynamics
after the quench, and they have experimentally investigated
the universal dynamical scaling related to critical phenom-
ena [45]. Recently, Maraga et al. have studied coarsening
in the OðNÞ model and reported the breakdown of usual
dynamical scaling [46]; however, this result is not well
understood from the perspective of universality classes.
Model.—We consider a system of spin-1 bosons in a 1D

optical lattice with a lattice constant a. Under the tight-
binding approximation, this system is well described by
the 1D spin-1 BH model [47]. Representing annihilation
and creation operators of bosons with magnetic quantum
numberm at the jth site as bm;j and b

†
m;j (m ¼ 1; 0;−1), the

Hamiltonian is given by

Ĥ ¼ −J
X

m;j

�
b̂†m;jþ1b̂m;j þ H:c:

�
þ q

X

m;j

m2b̂†m;jb̂m;j

þ U0

2

X

j

ρ̂jðρ̂j − 1Þ þ U2

2

X

j

�
Ŝ2
j − 2ρ̂j

�
; ð1Þ

where J, q,U0, andU2 characterize the hopping amplitude,
the quadratic Zeeman term, the density-dependent inter-
action, and the spin-dependent interaction, respectively.
The operators for the total particle number and the spin
vector at the jth site are given by ρ̂j ¼

P
mb̂

†
m;jb̂m;j and

Ŝα;j ¼
P

m;nb̂
†
m;jðSαÞmnb̂n;jðα ¼ x; y; zÞ with the spin-1

spin matrices ðSαÞmn.
The ground state of this model is either a Mott-insulator

phase or a superfluid phase, depending on the parameters
[47]. In this work, we focus on a deep superfluid regime,
where a dimensionless parameter κ ¼ ρfJ=U0 is much
larger than unity. Here, ρf ≡ N=3M is the filling factor with
the total particle number N and the number of lattice
points M.
Numerical result.—We apply the TWA method [48,49]

to study the relaxation dynamics dominated by many spin
domains. This method can incorporate effects of quantum
fluctuations through sampling of initial states. The system
is assumed to have a ferromagnetic interaction (U2 < 0),
and the parameters in Eq. (1) are set to be U0=J ¼ 1=40,
U2=U0 ¼ −1=10, N ¼ 40 000, and M ¼ 1024. Then, κ is
about 520 and the system is in a deep superfluid regime.
The detailed numerical implementation is described in [50],
where we demonstrate that, in a deep superfluid regime,
TWA results find good agreement with results obtained
by directly solving the Schrödinger equation with the
Crank-Nicolson method [56].
To excite many spin domains, we quench the coefficient

qðtÞ for the Zeeman term as

qðtÞ ¼
(
−2.4nU2½1 − ð1þ 1

2.4Þ t
τq
� ðt < τqÞ;

nU2 ðτq ≤ tÞ;
ð2Þ

where τq is the quench time and n ¼ N=M. We choose qð0Þ
such that the initial state is a polar phase. This quench
protocol is to cross two phase-transition points from the
polar phase to the broken-axisymmetry phase and then to
the ferromagnetic phase [47].
Figure 1(a) shows the time evolution of the spin amplitude

defined by S2av;αðtÞ¼hPjŜ
2
α;j=n2MiðtÞðα¼x;y;zÞ and

S2av;totðtÞ ¼
P

αS
2
av;αðtÞ, where the bracket means a quantum

average h� � �iðtÞ ¼ hψðtÞj � � � jψðtÞi with the state vector
jψðtÞi at time t. In this result, the quench time is set to be
τq ¼ 800τ with τ ¼ 4ℏ=J. At an early stage of the
quench protocol, the x and y components of the spin vector
rapidly grow because the system is brought to the broken-
axisymmetry phase where the dynamical instabilities of the
m ¼ �1 components lead to an increase in the particle
numbers of those components. At a later stage, the instability
of the m ¼ 0 component becomes strong as the system
enters the ferromagnetic phase. Then, the particle number of
them ¼ 0 component rapidly decreases and eventually the z
component dominates the other components.
After the quench, many domain walls are formed as

shown in Fig. 1(b), which is a spatiotemporal distribution
of Sz;j obtained by a single classical trajectory of the
TWA calculation. The encircled regions show where spin

(a)

(b)

FIG. 1. (a) Time evolution of S2av;αðα ¼ tot; y; zÞ for quench
time τq ¼ 800τ. Color bands show 3σ=

ffiffiffiffiffiffiffiffiffiffi
Nsam

p
error bars in the

TWA calculation, where σ is the standard deviation and Nsam is
the number of samples. The behavior of the x component (not
shown) is almost the same as that of the y component.
(b) Spatiotemporal distribution of Sz;j corresponding to a single
classical trajectory in the TWA calculation. Two dashed-white
circles indicate where domains merge.
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domains merge. This merging process enlarges domain
structures.
To investigate this coarsening behavior quantitatively,

we calculate a spatial correlation function Cz;jðtÞ for Ŝz;i
defined by

Cz;jðtÞ ¼
P

M
k¼1hŜz;jþkŜz;kiðtÞP
M
k¼1hŜz;kŜz;kiðtÞ

: ð3Þ

Figure 2 shows the time evolution of Cz;j, and the inset
shows the same curves with the abscissa normalized by the
correlation length LcðtÞ defined by the first zero crossing
point of the correlation function. We find that all curves are
rescaled into a single universal curve, showing a dynamical
scaling characteristic of coarsening dynamics. A small
deviation from the single curve is expected to be caused
by density and spin waves excited upon merging of the
domains, which cannot dissipate in the isolated system and
weaken long-range correlations. Actually, in dissipative 1D
systems, clear dynamical scaling without a small deviation
has been confirmed [57,58].
To understand the universality class, we examine the

time evolution of LcðtÞ. Figure 3 shows LcðtÞ, which
exhibits behavior quite different from the conventional
logarithmic and power laws [31–37].
Analytic result.—We show that the growth law of LcðtÞ

in Fig. 3 is characterized by the exponential integral. As
shown in Fig. 1(b), the size of a domain grows only through
merging of two domain-wall pairs. This suggests that a
domain-wall pair plays a key role here.
To analyze the domain-wall pair dynamics, we note that

this system can be transformed to a continuum model
similar to the spinor Gross-Pitaevskii equation because
the width of the domain wall 2λ ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J=jqFj

p ¼ 6.4a at
qF ¼ qðτqÞ is larger than the lattice constant a. Then, we

can derive a spin-hydrodynamic equation [59–62], i.e., the
Landau-Lifshitz (LL) equation, given by

∂
∂tSðx; tÞ ¼ −Sðx; tÞ ×Bðx; tÞ; ð4Þ

where Bðx; tÞ ¼ −J0∇2Sðx; tÞ − q0Szêz, J0 ¼ Ja2=ℏ and
q0 ¼ −qF=ℏ. The derivation of Eq. (4) is described in [50].
Applying the singular perturbation method [29,30,63]

to Eq. (4), we find that a domain-wall pair undergoes a
linear uniform motion with velocity VðlÞ given by

VðlÞ ¼ 4
ffiffiffiffiffiffiffiffi
J0q0

p
e−l=λ sinðϕ1 − ϕ2Þ: ð5Þ

Here, l is the distance between the two domain walls, and
the phase ϕj is the azimuthal angle of Sj at the center of
the domain wall labeled by j ¼ 1, 2. The derivation is
described in [50], where Eq. (5) is compared with numeri-
cal results of Eq. (4).
Next, we investigate the correlation length LcðtÞ by

assuming that many domain-wall pairs randomly move and
that the merging of domains occurs through collisions
between the domain-wall pairs. Let us examine a situation
where there are NdðtÞ domain walls, and the average
distance between the walls at time t is denoted as ldðtÞ.
First, we note that the average collision time τcðtÞ is given
by ldðtÞ=VavðtÞ. Here the average velocity is represented as
VavðtÞ ¼ V0 expð−ldðtÞ=λÞ because of Eq. (5). However,
we cannot determine the proportionality constant V0 since
the distribution of ϕ1 − ϕ2 is complicated. Then, assuming
only two properties of a Poisson process [64], we derive the
time derivative of NdðtÞ:

d
dt

NdðtÞ ¼ −
α

τcðtÞ
¼ −

αVav½ldðtÞ�
ldðtÞ

; ð6Þ

where α is a positive constant.

FIG. 2. Time evolution of the correlation function Cz;j with
t=τ ¼ 3000, 9000, 20 000, and 30 000. Color bands show
3σ=

ffiffiffiffiffiffiffiffiffiffi
Nsam

p
error bars. The first zero-crossing point of each curve

defines the correlation length LcðtÞ. The inset shows Cz;j with the
x axis normalized by LcðtÞ. All curves converge to a single one.

FIG. 3. Time evolution of the correlation length LcðtÞ for
quench times τq=τ ¼ 400, 800, and 1200. Color bands show error
bars. Black-dashed curves show analytic results of Eq. (8).
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Secondly, we use the fact that NdðtÞ is inversely propor-
tional to ldðtÞ, which leads to NdðtÞ ¼ β=ldðtÞ with a
positive constant β. We substitute it into Eq. (6), obtaining

d
dt

ldðtÞ ¼ γldðtÞ exp½−ldðtÞ=λ�; ð7Þ

where γ ¼ αV0=β.
The solution to this equation is expressed by the

exponential integral Ei½x� ¼ R
x
−∞ expðtÞ=t dt [65]. Using

this function and the fact that ldðtÞ is proportional to the
correlation length LcðtÞ ¼ ηldðtÞ with the proportionality
constant η, we arrive at

LcðtÞ ¼ ηλEi−1½γðt − t0Þ þ Ei½Lcðt0Þ=ηλ��: ð8Þ

Here Ei−1½b� ¼ a is the inverse function of Ei½a� ¼ b. We
note that this equation asymptotically gives a logarithmic
law after a sufficiently long time.
In Fig. 3, we plot Eq. (8) as dashed curves, which are in

excellent agreement with the numerical results. The devia-
tions of the data (τq=τ ¼ 400) in the early time are due to
partial breakdown of Eq. (5) because it becomes a good
approximation only when the distance l is large. Note that
Eq. (8) has two constants γ and η. In Fig. 3, we use ðγτ;ηÞ¼
ð0.000380;1.72Þ; ð0.000385;1.70Þ; ð0.000380;1.69Þ for
τq=τ ¼ 400, 800, 1200, respectively. Thus, all numerical
data can be fitted with almost the same γ and η.
Finally, we comment on the relation between our result

of Eq. (8) and the previous works concerning the 1D
coarsening [31–37]. In these works, the energy is dissi-
pated, so that two domain walls forming a wall pair contract
by themselves. Such a self-contraction was confirmed in
Refs. [29,30], and it is different from the coarsening
process (merging of two domain-wall pairs) in our study.
Thus, these systems do not obey Eq. (8), although both
previous studies and ours show the same logarithmic
behavior in the long-time limit. As an exception, there is
a convective Cahn-Hilliard equation, where a domain-wall
pair undergoes a linear uniform motion [36,66]. Thus we
expect that this system obeys Eq. (8), though it was not
derived in previous literature.
Discussion.—We first discuss why Eq. (8) is universal.

As can be seen from the derivation, this law originates from
the mechanism where a domain-wall pair moves at an
average velocity proportional to expð−l=λÞ without the
self-contraction. The exponential dependence of the veloc-
ity on l and the absence of self-contraction are due to the
interaction between the 1D domain walls and isolation from
the environment [67]. Thus, Eq. (8) reflects the nature of a
1D isolated system. A typical example that satisfies these
conditions is the 1D LL equation, which is a universal
effective equation in 1D spin systems. Thus, we expect
that the growth law of Eq. (8) is universal in a 1D isolated

spin system if the domain is stable and the domain
merging occurs.
Next, we discuss possible experimental situations. A

difficulty of observing Eq. (8) is a limited lifetime of
trapped atoms. In a 1D system, the interaction between
domain walls is weak due to the exponential decay of SðxÞ
for the domain walls, so that the relaxation time is very
long. However, Eq. (8) may be observed if we prepare a 1D
system with 7Li ðF ¼ 1Þ.
We consider quasi-1D systems of 7Li atoms in a 1D

optical lattice, where atoms are tightly confined in a radial
direction as shown in inset (a) of Fig. 4. The parameters
used are aexp ¼ 0.387 μm [68],Mexp ¼ 128, Nexp ¼ 5000,
the radial trapping frequency ωr ¼ 2π × 4500=s, and the
depth of the lattice Vd ¼ 5Er with Er ¼ ℏ2=8Ma2exp being
the recoil energy. Then, this system behaves as a quasi-1D
system, and a 1D calculation can be justified since the
condition ℏωr ∼ 2.8μ with the chemical potential μ is
satisfied and excitations in the radial direction are
suppressed.
Under the above setup, we have performed a TWA

calculation for the 1D system and confirmed Eq. (8) as
shown in Fig. 4. The characteristic time τexp is about
0.156 ms, and the calculation terminates at about 4.7 s,
which is accessible in current experiments. To measure the
correlation function, we need the spatial resolution of about
1 μm, which is available in an in situ imaging method [45].
When experiments continue until 9 s, we can obtain 4
data points for LcðtÞ [69]. In this time evolution, LcðtÞ is
completely different from any power and logarithmic laws.
Thus,we can distinguish Eq. (8) from the conventional laws.
Finally, we discuss a finite-size effect and three-body

loss. As for the former, we note that the number of domain
walls is not large as shown in inset (b) of Fig. 4. Thus, in the
long-time dynamics, the coarsening should be suppressed.

(a)

(b)

FIG. 4. Time evolution of the correlation length LcðtÞ in the
experimental setup. A black-dashed curve is the analytic result
of Eq. (8) with ðγτexp; ηÞ ¼ ð0.000280; 1.70Þ, where a color
band shows an error bar. Inset. (a) Possible experimental setup.
(b) Spatiotemporal distribution of Sz;j for a single classical
trajectory in the TWA calculation.
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However, we confirm Eq. (8) until about 4.7 s. After
this time, the finite-size effect may be significant. As for
the latter, the central density at each site is about
2.23 × 1014 =cm3. Thus, if a three-body loss rate of 7Li
is 6 × 10−31 cm6=s [70], the particle loss until 9 s is below
19%, which allows experimental test of our predictions.
Conclusion.—The relaxation dynamics, described by the

1D spin-1 BH model, have been analytically and numeri-
cally studied. Our numerical calculation based on the TWA
method has revealed that the system in a deep superfluid
regime exhibits coarsening with the dynamical scaling that
belongs to the universality class different from conven-
tional classes. We have analytically obtained the universal
domain-growth law of Eq. (8), which is in remarkable
agreement with the numerical data.
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