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We simulate the dynamics of a disordered interacting spin chain subject to a quasiperiodic time-
dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians.
Exploiting the recursive drive structure, we can efficiently simulate exponentially long times. After an
initial transient, the system exhibits a long-lived glassy regime characterized by a logarithmically slow
growth of entanglement and decay of correlations analogous to the dynamics at the many-body
delocalization transition. Ultimately, at long time scales, which diverge exponentially for weak or rapid
drives, the system thermalizes to infinite temperature. The slow relaxation enables metastable dynamical
phases, exemplified by a “time quasicrystal” in which spins exhibit persistent oscillations with a distinct
quasiperiodic pattern from that of the drive. We show that in contrast with Floquet systems, a high-
frequency expansion strictly breaks down above fourth order, and fails to produce an effective static
Hamiltonian that would capture the prethermal glassy relaxation.
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Introduction.—Interacting quantum many-body systems
often exhibit chaotic dynamics that rapidly scramble
quantum information and lead to highly entangled states
whose local properties are thermal and classical [1,2]. A
dramatic exception occurs in isolated and disordered
systems where many-body localization (MBL) can arrest
thermalization, resulting in quantum coherent dynamics
at arbitrarily high energy density [3–5]. This dichotomy
naturally raises fundamental questions about when and
how a system thermalizes. What are the universal features
governing the dynamical approach to the final—thermal or
nonthermal—state? More practically, what classes of pro-
tocols allow one to manipulate a many-body system with-
out rapidly scrambling its stored quantum information?
Given their large bandwidth and dense spectrum, one

might naively expect that any persistent dynamical manipu-
lation of an isolated, interacting quantum many-body
system leads to runaway heating to a featureless infinite-
temperature state. Indeed, random time-dependent mani-
pulations have recently been shown to cause rapid growth
of entanglement, accompanied by universal hydrodynamic
features [6–8]. However, this expectation is violated in
time-periodically driven (Floquet) systems with strong
disorder, in which sufficiently rapid driving maintains
MBL and indefinitely avoids heating [9–11]. Even in the
absence of disorder, rapid periodic driving leads to long-
lived prethermal phenomena [12–21]. Floquet-MBL sys-
tems have been shown to exhibit remarkable dynamic
phenomena from spontaneous time-translation symmetry

breaking [22–27] to dynamical topological phases with no
equilibrium analog [22,28–37].
The stark contrast between the behaviors under random

and periodic driving can be understood by a simple
argument: local time-dependent Hamiltonians can only
make local rearrangements. In strongly disordered systems,
such rearrangements have a nonzero energy cost and are
generically nonresonant with harmonics of the driving
frequency. This heuristic forms the basis for more sophi-
sticated considerations for the stability of Floquet-MBL
systems [11], which are supported by numerical simula-
tions [9,10], and cold-atom experiments [38]. Using similar
arguments, one can rule out the stability of MBL to random
time-dependent drives, which have continuous frequency
spectra capable of resonantly inducing arbitrary local
transitions leading to thermalization.
In this Letter, we consider an intermediate case between

periodic and random driving by subjecting a strongly dis-
ordered quantum many-body system to a drive with quasi-
periodic time dependence. The quasiperiodic drive has a
dense, but sharply discontinuous frequency spectrum that
occupies a set ofmeasure zero.A priori, it is not clear whether
the density of spectral content will drive heating and therma-
lization or whether its sparsity will preserve MBL. We find
that quasiperiodic driving does eventually lead to therma-
lization to a featureless infinite temperature state, but only
after a long time tth that grows exponentially in the inverse
driving strength and the rate of driving. While reminiscent of
prethermalization in delocalizedFloquet systems [12–16], the
dynamics before tth are not described by an effective finite
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temperature equilibrium. Instead, this regime shows a loga-
rithmically slow relaxation of correlations and growth of
entanglement, which we will call glassy dynamics. This
glassy behavior is analogous to the critical dynamics at
the transition between MBL and thermal systems in non-
driven settings [39–41]. We explore to what extent the
quasiperiodic evolution can be reduced to an effective static
Hamiltonian, connecting our study to the question of reduc-
ibility of differential equationswith quasiperiodic coefficients
[42,43]. The glassy relaxation regime can host new meta-
stable dynamical phases, which we illustrate with a quasi-
periodic analog of time-translation symmetry breaking—a
“time quasicrystal.”
Model.—To address the fate of a quantum many-body

system under quasiperiodic driving, we numerically simu-
late spin-1=2 chains, subjected to a stroboscopic drive
consisting of a Fibonacci sequence of unitary evolutions:

Un ¼ Un−2Un−1; ð1Þ
for n ≥ 2. The sequence is initialized by two elementary
unitaries formed from two different static Hamiltonian
evolutions: U0 ¼ expð−iλHþÞ and U1 ¼ expð−iλH−Þ,
where

H� ¼
XL

i¼1

hiS
z
i þ

XL−1

i¼1

ðJ0 � δJÞSi · Siþ1: ð2Þ

The hi are random fields drawn independently for each site
from a uniform distribution h ∈ ½−2π; 2πÞ, J0 is a static
interaction, δJ represents the strength of the quasiperiodic
driving, and λ ∈ ½0; 1� is the characteristic driving time
scale. We will focus on the regime jJ0 � δJj≲ 1.7, where
H� as static Hamiltonians would be MBL [44]. As such,
they are separately described by emergent local integrals of
motion (LIOM) with definite Sz value [45]. Unless other-
wise noted, we will take J0 ¼ 0. An appealing feature of
the recursive nature of the drive is that it enables simulation

of exponentially long Fibonacci times tn ¼ Fnþ1 ∼ φnþ1

with only n unitary multiplications; here φ ¼ ð1þ ffiffiffi
5

p Þ=2
is the golden ratio. This enables us to simulate the long-
time physics, limited only by machine precision.
Results.—We focus on three observables: the z compo-

nent of spin CzzðtÞ ¼ 4hSzi ðtÞSzi ð0Þi, whose total value is
conserved by the evolution, and whose local dynamics are
related to spin transport; the transverse spin fluctuations
Cþ−ðtÞ ¼ 4jhSþi ðtÞS−i ð0Þij, which encodes the dephasing
of quantum superpositions of up and down spins; and the
bi-partite (half-system) entanglement entropy SbpðtÞ.
Before discussing the results, we summarize the behavior

of these quantities in static MBL, periodically driven
(Floquet) MBL, and thermalizing systems. In a static or
Floquet-MBL system, CzzðtÞ tends to a nonzero constant at
long times, indicating the absence of spin transport and
emergent conservation laws that produce infinite memory of
the initial spin configuration [9,10,45,46]. The transverse
fluctuations Cþ−ðtÞ decay as a power law in time from
dephasing due to classical interactions among the local
conserved quantities [47]. This dephasing also produces a
logarithmically slow growth of entanglement SbpðtÞ ∼ log t
[48–50]. On the other hand, in strongly thermal or randomly
driven systems, the nonzero spin conductivity and chaotic
scrambling leads to an exponential decay of correlation
functions Czz; Cþ− ∼ e−t=tth and a linear growth in SbpðtÞ ∼
t [51,52]. Finally, a clean delocalized system subject to
rapid periodic driving exhibits a prethermalization regime,
in which the system initially equilibrates with respect to an
effectiveHamiltonian at finite temperature. Prethermalization
persists up to a time exponentially long in the driving
frequency [12–15], after which the system heats to a
featureless infinite temperature state.
Figure 1 shows Czz, Cþ−, and Sbp for quasiperiodic

driving, in a quench from an initial product state. These

(a) (b) (c)

FIG. 1. Quasiperiodically driven spin chain. Time evolution under the quasiperiodic driving sequence, with J0 ¼ 0, δJ ¼ π=30, λ ¼ 1
and varying L [markers defined in (c)]. All quantities are averaged over states in the global Sz ¼ 0 sector of the spin chain and averaged
over at least 3000 disorder realizations. (a) The bipartite entanglement SbpðtÞ. Inset: The normalized entanglement Sbp=L. (b) Onsite
correlation function CzzðtÞ on site i ¼ L=2. This plot additionally shows (dashed line) the case of driving an L ¼ 150 chain in the
noninteracting limit of Eq. (2); see the Supplemental Material [53]. Inset: Comparison of driving with periodic (P), quasiperiodic (QP),
and random (R) sequences of the elementary unitaries, with L ¼ 8. The random case is averaged over 20 different random sequences,
each with 100 disorder realizations. (c) Correlation function Cþ−ðtÞ on site i ¼ L=2.
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observables are averaged over initial states and disorder
realizations. We observe three distinct regimes: First, there
is a short-time transient regime in which there is no
distinction between periodic, quasiperiodic and random
driving [Fig. 1(b), inset]. Next, there is a long-lived glassy
relaxation regime where Sbp grows and Czz decays loga-
rithmically slowly. Finally, after a time-scale tth that is
exponentially long for weak or rapid driving, the system
ultimately heats up to infinite temperature with a nonzero
rate, signaled by linear growth of entanglement and rapid
decay of correlations. Ultimately, Sbp will saturate to its
thermal value and Czz; Cþ− decay to zero.
The behavior of this quasiperiodic system is markedly

distinct from the other scenarios mentioned above, as
contrasted in the inset of Fig. 1(b). Similar to an MBL
system, Cþ− shows aperiodic oscillations that decay
slowly. Unlike an MBL system, however, Czz does not
saturate to a nonzero value. Taken together, these imply that
the glassy relaxation regime does not possess LIOM.
Nonetheless, it does not exhibit the rapid decay character-
istic of a thermal system.
There are two ways we can identify the thermalization

time tth: as the time whereCzz curves of different L separate
from each other after the logarithmic decay or as the time
where the normalized entanglement curves Sbp=L cross at a
single point as a function of Lt [Fig. 1(a), inset]. These two
ways of extracting tth follow each other closely and allow
us to extract the parametric dependence of tth on δJ and λ
(Fig. 2) [55]. At small λ and δJ we find an asymptotic
dependance which is consistent with tth ∼ e1=λ, tth ∼ e1=δJ,
implying an anomalously slow dephasing and decay over
extremely long time scales. At larger λ, δJ there may be
deviations from this form. In this respect, the logarithmic
decay is reminiscent of the long-lived prethermal regime
of non-MBL Floquet systems [12–16]. However, the

entanglement growth in this region is slower than linear
and consistent with logarithmic growth, which would not
be the case of a system equilibrating to an effective finite
temperature and prethermal Hamiltonian. We note that such
logarithmic decay is observed at the phase transition
between MBL and thermal phases [39–41]; here, we see
this critical-like behavior without fine-tuning.
It is interesting to compare these results to those of a

noninteracting analog of Eq. (2) (dashed line in Fig. 1(b),
for detailed comparison see [53]). The noninteracting
system also exhibits a slow decay regime, but in this case
there is no crossover to fast thermalization (tth ¼ þ∞).
This suggests that, despite the absence of local conserved
quantities, the long lived glassy relaxation regime in the
interacting case is nonetheless governed by the dynamics of
emergent single-particle-like degrees of freedom.
(Ir)reducibility of the quasiperiodic drive.—High-

frequency expansions provide a useful tool for understand-
ing prethermalization behavior in Floquet systems. They
enable the computation of an effective static prethermal
Hamiltonian and the expansion breakdown at long times
indicates the onset of thermalization. Here, we attempt to
develop a generic expansion of the many-body time-evolu-
tion operator organized in powers of λ—effectively a
Magnus expansion—taking advantage of the special self-
similar structure of the Fibonacci drive. Technical details are
given in the Supplemental Material [53].
We can analytically construct a recursive Magnus

expansion for Ωn ¼ logUn, using the local deflation rule
structure of quasiperiodic sequences [56,57]. We can
generate Unþ1 from Un by replacing U0 → U1 and U1 →
U0U1 in the product defining Un. We expand Ωn onto a
basis of nested commutators and construct and solve
difference equations for the coefficients in this expansion,
order by order in the degree k of the commutator basis.
Up to degree two,

Ωn ¼ Fn−1Ω0 þ FnΩ1 þ
1

2
fð−1Þn þ Fn−2g½Ω0;Ω1�:

Explicit expressions for degrees k ¼ 3, 4 are given in the
Supplemental Material [53]. In order to assign an effective
static Hamiltonian interpretation, the asymptotic form for
all coefficients need to be ∼φn, as above. However, for
k ≥ 4, the asymptotic behavior is ∼φðk−2Þn. Therefore, the
time where the non-Hamiltonian evolution dominates
becomes increasingly short tn ∼ λ−ðk−1Þ=ðk−3Þ. We note that
this breakdown is fundamentally different from the break-
down of thermalization in the Floquet-Magnus case for
periodic driving, which is due to a lack of convergence of
the expansion.
Despite this, we find that truncating the expansion at

k ¼ 3 gives a Hamiltonian evolution which reproduces the
data at small λ remarkably well, with the exception of rare
anomalous disorder configurations. Indeed, the time where
this expansion deviates from the data scales with λ−5, much

(a) (b)

FIG. 2. Thermalization time tth. Thermalization time extracted
from the crossing of Sbp=L, between pairs of L (6,8),(8,10),
(10,12). (a) As a function of 1=δJ for λ ¼ 1=2π, 1 and (b) as a
function of λ for δJ ¼ π=20, π=5. Error bars are linear estimates
in Fibonacci time; dashed lines are fits of form log tn ∼ 1=λ, 1=δJ
to the (10,12) crossing.
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later than the expected λ−3 (Fig. 3). In no case, however,
does the Magnus expansion capture the anomalous loga-
rithmic decay of Czz or growth of Sbp for t < tth, suggesting
these are inherently dynamical phenomena not governed
by a static Hamiltonian, i.e., not governed by an effective
conserved (quasi)-energy.
Fibonacci time quasicrystal.—The existence of an expo-

nentially long-lived quasi-MBL regime, with only loga-
rithmically slow decay, raises the prospect of transient
phases unique to quasiperiodically driven systems. These
are analogous to metastable phases in prethermal Floquet
settings, but with the important distinction that the quasi-
periodically driven system does not require cooling to
observe quantum coherent behavior. To illustrate this
possibility, we now construct a model that exhibits the
quasiperiodic analog of discrete time-translation sym-
metry-breaking [22–27]—a “time quasicrystal” (TQC).
The model uses the Fibonacci sequence of Eq. (1), but
with elementary unitaries

U0 ¼ e−iθ
P

i
Sxi ; U1 ¼ e−iλ

P
i
ðJiSzi Sziþ1

þhzi S
z
iþhxi S

x
i Þ: ð3Þ

This model is closely inspired by the periodic version
introduced in Refs. [22,24].
Consider the ideal case of Eq. (3), where θ ¼ π, hxi ¼ 0

and random Ji, hzi . Then U0 ∼
Q

iS
x
i applies a perfect,

global spin flip, while U1 is made of only Sz operators.
A simple Sz-product state would merely acquire a phase
under U1 and flip under U0. The time evolution of a
specific spin hSzi ðtÞSzi ð0Þi exhibits an oscillating quasiperi-
odic pattern that is sharply distinct from the driving pattern.
An elegant way to capture this difference is to view the
quasiperiodic sequence as a projection of a 1D strip cutting
through a regular 2D square lattice at an irrational angle
(see Ref. [53]). The TQC spin response corresponds to a
projection from a 2D lattice having a doubled unit cell
compared to that for the drive.

Alternatively, we can directly compare the Fourier spec-
trum of the spin response to that of the drive [56,57]. For
this, it is convenient to interpretU0 in Eq. (1) as arising from
an instantaneous pulse, so that we can write the evolution in
terms of a Hamiltonian with quasiperiodic delta-function
“kicking”: HðtÞ ¼ H1 þ

P
M
m¼1 δðt − tmÞH0, where tm ¼

⌊φm⌋ and M is the largest integer such that tM ≤ t. In the
ideal limit θ ¼ π, hxi ¼ 0, the correlation function would
satisfy dCzzðtÞ=dt ¼ 2

P
M
m¼1ð−1Þmδðt − tmÞ. The spectrum

of the spin response is shifted compared to the drive (see
Fig. 4 and the Supplemental Material [53]). The distinction
between the spin response and drive patterns is even
simpler if we consider stroboscopically measuring CzzðtÞ
at Fibonacci times tn ¼ Fn. At these times, the initial spins
have been flipped Fn−1 mod 2 times from their initial state.
Since Fk mod 2 form a repeating pattern with period 3; the
TQC is characterized by persistent period-3 oscillations in
Fibonacci time.
These aspects also generalize straightforwardly to other

time quasicrystal phases. For example, we may replace the
Ising spins (Z2) by N-state clock spins (ZN) in U1 and
replace Sx by the operator that increments the clock spins in
U0 of Eq. (3). In Fibonacci time, the spins would oscillate

(a) (b)

FIG. 3. Magnus expansion. (a) Onsite correlation function
CzzðtÞ for L ¼ 8, J0 ¼ 0, δJ ¼ π=5 and different λ compared
to that obtained by the Magnus expansion Hamiltonian at third
order. (b) Initial time at which CzzðtÞ of the Magnus expansion
deviates by more than 10−4 from the data.

(a)

(b) (c)

FIG. 4. Time quasicrystal. (a) TEBD data of a single spin in a
spin-1=2 chain subjected to drive Eq. (3) with U0 occurring
instantaneously. Parameters are L ¼ 60, λ ¼ 1, and θ ¼ π − 0.1,
as well as random variables drawn from uniform distributions
J ∈ ½2; 8�, hzi ∈ ½0; 2�, hxi ∈ ½0; 0.6�. We show a single disorder
realization. (b) Fourier spectra of the quasiperiodic (QP) drive
pattern, of the ideal TQC pattern and of the TEBD data.
(c) Magnetization at Fibonacci times, for an ideal (θ ¼ π) and
nonideal (θ ¼ π − 0.1) pulse, shows period-3 oscillations char-
acteristic of the TQC.
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with the Pisano period πðNÞ; for N ¼ 2, 3, 4, 5, πðNÞ ¼ 3,
8, 6, 20. While the emergence of quasiperiodic correlations
that have a different pattern from the drive can occur in
ideally driven single spins [58], this is special to fine-tuned
drivings. In the many-body set-up (3), the interactions give
phase rigidity even away from the ideal limit θ ¼ π, as for a
Floquet time crystal [25].
For θ ≠ π or hx ≠ 0, the model becomes nonintegrable

and we lose analytic control. Figure 4 shows CzzðtÞ from
time-evolving block decimation (TEBD) [59–61] for sys-
tem size L ¼ 60 starting from a product state. The TEBD
calculations were done with Trotter step 0.01λ, keeping the
discarded weight below 10−7 throughout the time evolu-
tion. Away from the ideal limit, the results largely track the
ideal oscillations, but we clearly see the overall logarithmic
decay in the quasiperiodic oscillations due to the quasi-
MBL nature as discussed in the previous sections. In the
Heisenberg chain [Eq. (2)] discussed above, the glassy
relaxation was smoothly connected to the noninteracting
limit. It is intriguing that this behavior is again observed in
a system that is unconnected to any free fermion limit due
to the longitudinal fields. This again suggests a possible
description in terms of an emergent set of effectively single-
particle, though nonconserved, degrees of freedom.
Despite that the system eventually thermalizes, for

moderately small λ the decay is sufficiently slow to permit
many period-3 oscillations in Fibonacci time. This is a
fundamentally different type of approximate nonequili-
brium order than previously discussed for the cases of
prethermal order in Floquet systems [12–16], which require
cooling to an effective prethermal ground state.
Beyond this quasiperiodic generalization of a Floquet

time crystal, the slow relaxation in the long-lived regime of
glassy relaxation opens the door to more exotic quantum
dynamical behavior such as long-lived quasiperiodic topo-
logical phenomena. Investigating this intriguing possibility,
and developing a systematic theoretical framework to
characterize such metastable quantum phases will be an
important challenge for future work.
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