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Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum
applications and understanding fundamental phenomena. A central question is the role of localization in
quenching thermalization in many-body systems and whether such localization survives in the presence of
interactions.Probing thisquestion in real systemsnecessitates thedevelopmentofanexperimentallymeasurable
metric that can distinguish between different types of localization.While it is known that the localized phase of
interacting systems [many-body localization (MBL)] exhibits a long-time logarithmic growth in entanglement
entropy that distinguishes it from the noninteracting case ofAnderson localization (AL), entanglement entropy
is difficult to measure experimentally. Here, we present a novel correlation metric, capable of distinguishing
MBLfromALinhigh-temperature spin systems.Wedemonstrate theuseof thismetric todetect localization ina
natural solid-state spin system using nuclearmagnetic resonance (NMR).We engineer the natural Hamiltonian
to controllably introduce disorder and interactions, and observe the emergence of localization. In particular,
while our correlation metric saturates for AL, it slowly keeps increasing for MBL, demonstrating analogous
features to entanglement entropy, aswe show in simulations.Our results show that ourNMR techniques, akin to
measuring out-of-time correlations, are well suited for studying localization in spin systems.
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Anderson first demonstrated that single particle wave
functions can become exponentially localized in the presence
of disorder [1].Whether this localization [2–4] survives in the
presence of interactions has received much attention in recent
years [5–10].Numerical evidence in spin chains indicates that
the system may be in the many-body localization (MBL)
or ergodic phase depending on the relative strength of
interaction and disorder [11–13]. MBL can be distinguished
from its noninteracting counterpart [Anderson localization
(AL)] via the dynamics of entanglement entropy [14–17].
Entanglement entropy (EE) is, however, difficult to evaluate
experimentally and so far has only beenmeasured on systems
with a small number of particles [18]. Oneway to circumvent
this challenge is to measure entanglement witnesses such as
the quantum Fisher information, which can serve as a lower
bound for entanglement entropy [8] for pure states.
A remarkable feature about the MBL phase is that it is

predicted to persist at high and even infinite temperature
[19], where states are highly mixed and there is little to no
entanglement present. How does one characterize the MBL
phase experimentally in such a system? Here, we introduce
a novel metric capable of distinguishing MBL from AL in
the nonequilibrium dynamics of highly mixed states and
provide both numerical and experimental evidence in
support. Our approach requires no local control and relies
only on collective rotations and measurements, in contrast

to recently proposed metrics [20] that also detect the spread
of correlations, but require single-spin addressability. The
experimental system is composed of nuclear spins in a
natural crystal coupled by the magnetic dipolar interaction,
which can be mapped with high fidelity to an ensemble of
1D, nearest-neighbor coupled spin chains [21,22]. We
exploit Hamiltonian engineering techniques to selectively
introduce and tune both the interaction strength and the
degree of disorder in the system, and measure the growth of
many-spin correlations in both the AL and MBL regimes.
We consider a linear chain of L spins initially at

equilibrium at high temperature (β → 0) in a strong mag-
netic field aligned along the ẑ direction. Under these
conditions, the thermal equilibrium state of the system
can be expressed ρeq ¼ ð1 − ϵ

P
jS

j
zÞ=2L (with S as the

spin-1=2 operator) to first order in ϵ ¼ βωL ≪ 1, where ωL
is the spin Zeeman energy and ℏ ¼ 1. Any spin-spin
interactions are assumed to be negligible compared to the
Zeeman energy, so that the natural interaction Hamiltonian
commutes with the thermal equilibrium state.
If the effective interaction Hamiltonian H of the system

is changed suddenly (a rapid quench), the system is no
longer in equilibrium and evolves into a many-body
correlated state. The presence of disorder hinders the
growth of correlations and can give rise to localized states,
characterized by an exponentially decreasing probability of
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correlations outside a typical localization length ξ, as
shown in Fig. 1. Inspired by this picture, we define a
metric of localization that measures the average length over
which correlations have developed.
We can generically write the high-temperature time-

evolved density matrix as

ρðtÞ ¼ 1
2L

−
ϵ

ffiffiffiffi
L

p

2L

XL

k¼1

Xζk

s¼1

bskðtÞBs
k; ð1Þ

where Bs
k are operators composed of tensor products of k

Pauli matrices and L − k identity operators. Here, ζk is the
number of configurations with exactly k nonidentity Pauli
operators. To quantify localization we define the “average
correlation length”

Lc ¼
XL

k¼1

kfk; ð2Þ

where fk ¼
Pζk

s¼1½bsk�2 is the contribution of all possible
spin correlations with Hamming weight k (withP

L
k¼1 fk ¼ 1). In the initial equilibrium state ρeq there

are no spin correlations and Lc ¼ 1. In the absence of
disorder, we expect Lc to grow and eventually saturate at a
value dependent on L. Introducing disorder leads to a
quantitatively different behavior. When the system is non-
interacting, AL leads to a coherent suppression of many-
spin correlations and Lc is bound by the localization
length ξ. When interactions are present, disorder is unable
to completely suppress the correlation growth. The slow
growth of Lc in the presence of interactions is the key
feature that enables Lc to distinguish between AL andMBL
for mixed states.
Consider an effective spin Hamiltonian of the form

H ¼ uþ v
2

XL−1

j¼1

JSjxS
jþ1
x þ v − u

2

XL−1

j¼1

JSjyS
jþ1
y

þ g
XL

j¼1

hjS
j
z − v

XL−1

j¼1

JSjzS
jþ1
z : ð3Þ

The first two terms represent an integrable Hamiltonian, as
they map to a free fermionic Hamiltonian via a Jordan-
Wigner transformation [23]. The third term corresponds to
on site disorder, and the last term introduces interactions
between fermions (see Sec. 2 in the Supplemental Material
[24], which includes Refs. [25–41]). Tuning the relative
strength of these parameters allows us to explore different
physical regimes. Figure 2 shows that both EE
(S ¼ −Tr½ρL log ρL�, where ρL is the reduced density
matrix of the left half of the chain) and the correlation
length Lc display a characteristic logarithmic growth in
time [15] when the system enters the MBL phase and
saturate when the system is noninteracting. These numeri-
cal simulations suggest that Lc can be used as an alternative
to EE to distinguish MBL from AL for mixed states
(Sec. 6.3 of the Supplemental Material [24]). Lc and EE
are related for more general states that arise from evolution
under other spin Hamiltonians.
Measuring Lc for a generic many-body state is chal-

lenging, since it is usually difficult to directly measure
many-body correlations to determine fk, and the number of
configurations ζk is exponential in k and L. Here, we show
how to extract Lc in our experiments, with a method that
can be extended to other systems.
Our experimental system consists of a single crystal of

fluorapatite [Ca5ðPO4Þ3F] placed in a strong magnetic field
(7 T, ωL ¼ 283 MHz). The 19F spin-1=2 nuclei in the
hexagonal fluorapatite crystal form linear chains along the
c axis, interrupted only by rare defects, each surrounded
by six other chains. When the c axis is oriented parallel
to the external magnetic field, the cross-chain couplings is
40 times weaker than nearest-neighbor intrachain couplings
(J ¼ −33 krad= sec). The system can then be treated
approximately as an ensemble of identical spin chains

Lc

Spin chain in a random field

Initial local perturbation

Spread of correlations
t

Lc

t

ξ
Anderson Localization

Many-Body
 Localization

~log(t)

FIG. 1. Quantum many-body correlations grow from an initial
localized state, but are restricted to a finite size by disorder. The
average correlation length Lc, which measures the spread of the
correlations, saturates at the localization length ξ in the case of
AL, but grows logarithmically with time in the MBL regime.
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FIG. 2. Simulations of spin correlation and entanglement
entropy. We compare EE of the reduced half chain (dashed
lines, right axis) with the correlation length Lc (solid lines, left
axis) and the approximate Lc obtained from measuring the MQC
(dotted). Simulations using exact diagonalization were performed
for L ¼ 8 and with a uniform random noise ghj=u ∈ ½−8; 8� for
960 realizations. The similar behaviors (including logarithmic
growth) confirm that Lc is as good an indicator of MBL as the
more commonly used EE. Here, EE is renormalized to vary
between zero and one, in order to account for the mixed initial
state of the system (Sec. 6 of Supplemental Material [24]).
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[22,42,43]. In addition, each F spin is surrounded by
three 31P spin-1=2 nuclei. The spins interact via the natural
dipolar Hamiltonian, Hnat ¼ 1

2

P
j<kJjkð2SjzSkz − SjxSkx −

SjySkyÞ þ
P

j;κhjκS
j
zsκz, where Sjα ¼ σjα=2 (α ¼ x, y, z) are

spin-1=2 operators of the jth F spin and sκz of the κth P spin.
At room temperature, the P spins are in an equal mixture

of mz ¼ �1=2 states. This allows us to replace the
heteronuclear interactions by

P
jhjS

j
z, where hj is now a

random variable representing the disordered field seen
locally by each 19F. The dipolar coupling between 31P
nuclei is about 27 times smaller than that between 19F
nuclei and can be neglected on our experiment time scales.
The random local field thus appears quasistatic in these
experiments, resulting in an effective Hamiltonian Heff

nat ¼
ðJ=2ÞPjð2SjzSjþ1

z − SjxS
jþ1
x − SjyS

jþ1
y Þ þP

jhjS
j
z, where

we kept nearest-neighbor couplings only.
While the high-temperature thermal equilibrium state

does not evolve under this Hamiltonian, we can quench the
system to a different effective Hamiltonian of the form of
Eq. (3) by periodically applying a radio frequency (rf) pulse
sequence in resonance with the F spins. This method (called
coherent averaging [44]) has been long used in the nuclear
magnetic resonance (NMR) literature for spectroscopy and
condensed matter studies. Here, we further push these
techniques to engineer the broad class of Floquet (periodic)
Hamiltonians in Eq. (3), with tunable disorder and inter-
actions. Changing the sequences of pulses and delays in a
period, we can experimentally adjust the parameters u, v,
and g and explore various regimes of interest (Sec. 3.2 in
the Supplemental Material [24] shows the experimental
pulse sequence). In addition, we are also able to reverse the
arrow of time, a tool that allows measuring out-of-time
ordered correlations (OTOCs).
In order to calculate the correlation length Lc, we need

the coefficients fk, which we can determine experimentally
by borrowing from well-known NMR techniques that
approximate the number of correlated spins by their
quantum coherence number [45]. Multiple quantum coher-
ence (MQC) intensities of order q describe the contribution
of terms jmaihm0

aj in the density matrix, such that
ma −m0

a ¼ q, with ma the collective Sa eigenvalue (typ-
ically a ¼ z). MQC intensities Iq can be measured by
relying on their distinct behavior under collective rotations
[45–47]. The distribution of Iq has been traditionally used
to approximate the average number of correlated spins in
3D spin networks [48–50]. While this approximation fails
in 1D systems, we find instead a practical experimental
protocol to exactly measure Lc for noninteracting systems.
The protocol still yields a very good approximation for
disordered interacting (MBL) systems.
We first note that, in noninteracting systems, for simple

initial states such as ρeq, the density operator at time t, when
expanded in the form of Eq. (1) has a particularly simple
form. The number of configurations with k Pauli operators,

ζk ∝ L − k, as all many-spin correlations are of the form
Bs
k ∼ Ssað

Qkþs−2
l¼sþ1 S

l
zÞSkþs−1

b � Ssbð
Qkþs−2

l¼sþ1 S
l
zÞSkþs−1

a , where
the end spins Sa;b are either Sx or Sy. This structure is key to
extracting the fk coefficients, as correlations with different
k will exhibit distinct MQC intensities. To further distin-
guish the four different end-spin combinations, we first
decompose ρðtÞ into four corresponding orthogonal blocks,
using time reversal and phase cycling [51], and then
measure the MQC intensities encoded in the x axis for
each jth block, Ijq (see Sec. 5 in the Supplemental Material
[24]). The resulting MQC intensities can be related to fk
in Eq. (2) by a linear transformation, fk ¼

P
jqM

ðjÞ
kq I

j
q, and

from the extracted fk we can calculate Lc. While this
protocol was designed for the Hamiltonian we investigated,
similar strategies will be available for other integrable
Hamiltonians, with a proper choice of the axes along which
the MQC are measured.
As long as the interaction term is not too large (and

disorder large enough), we expect the evolved density
matrix state to still mostly contain the simpler many-spin
correlations described above, thus allowing us to extract an
approximate Lc. The validity of this argument can be seen
from the simulation results shown in Fig. 2, where the
approximated Lc (calculated from the MQC) continues to
closely track the exact Lc and the entanglement entropy in
the MBL phase.
Combining Hamiltonian engineering with MQC readout,

we can explore the behavior of both noninteracting and
interacting models in the presence of disorder. Figure 3
shows the experimentally extracted Lc for our interacting
model, as compared to the noninteracting case. For the
noninteracting Hamiltonian (v ¼ 0), in the absence of
disorder, we expect Lc to increase linearly, consistent with
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FIG. 3. Experimental measurements of correlations in interact-
ing spin chains. We plot in log-linear scale the Lc dynamics for
varying interaction strengths v, in the presence of disorder.
Data are for u ¼ 0.24 and g ¼ 0.12. After an initial growth of
correlations, Lc saturates for the noninteracting systems, while
it shows a slow growth in the presence of interactions, indicating
MBL. In contrast, the integrable case (gray, v ¼ 0, g ¼ 0) shows
more pronounced growth, although it is still limited by exper-
imental imperfections.
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the Lieb-Robinson bound for short-ranged Hamiltonians
[52]. In the thermodynamic limit L → ∞ and at large times
uJt ≫ 1, Lc grows with a velocity V ¼ 2uJ=π. In the
presence of disorder, instead, we expect Lc to initially
increase, as spins correlate within the localization length,
and to saturate at long times due to AL. This experimental
evidence proves that our Hamiltonian engineering tech-
nique can indeed introduce disorder in the system evolu-
tion. The figure also shows the behavior of Lc as the
strength of the interactions [v in Eq. (3)] are varied, for a
fixed disorder strength. The experiments clearly reveal the
emergence of slow growth in Lc when interactions are
added, the hallmark feature of MBL [15,53].
The strength and limitations of our experimental system

are evident when we consider the change in Lc as a function
of disorder strength for the noninteracting case (Fig. 4).
Increasing disorder is clearly seen to result in a saturation of
Lc, consistent with AL. The lines are numerical simula-
tions, showing that experimental results are consistent with
theoretical predictions. Discrepancies at higher Lc are
likely due to experimental imperfections.
Control imperfection (such as pulse errors and rf

transients) and decoherence due to the open system
dynamics preferentially affect the higher quantum coher-
ences of large spin correlations, leading to an apparent
saturation of Lc. The same experimental imperfections
make it even more difficult to observe the ergodic phase,
where interactions dominate disorder, ideally leading to a
fast growth in time of the correlation length, which is more
heavily affected by the observed saturation. While high-
fidelity experimental control of complex many-body states
is key for any experimental metric of complexity, in some
cases, it is still possible to distinguish between the
saturation of Lc due to experimental limitations at long
time and its quenching due to increasing disorder using

additional symmetry properties of the MQCs (see Sec. 5 in
Supplemental Material [24]).
Note that in the experiments we can probe this dynamics

only for relatively short times, where the physical system is a
good approximation to the ideal model, as verified elsewhere
[21]. Indeed, while the average chain length (determined by
crystal defects) is much longer than the 20–25 spins explored
on these time scales, we have long-range couplings (∝ 1=r3)
in a 3D crystal, where each spin chain interacts with six
surrounding chains. In addition, pulse imperfections and
higher orders in the Magnus expansion can lead to unwanted
terms in the engineered Hamiltonian. We note that rapidly
applied rf pulses do not give rise to heating [54], while the
unavoidable interaction with the environment, dominated by
other spins in the system, leads to decoherence (dephasing)
that affects equally the interacting and noninteracting
regimes. We kept the experimental time short to minimize
these effects and observe the localization regime, before the
experimentally unavoidable thermalization can appear
(indeed the time is also much shorter than the relaxation
time T1 ≈ 0.8 s and the P dynamics).
We can obtain a more intuitive understanding of why our

experimental method for extracting the correlation length
from MQC is quite robust. While measuring Lc via the
MQC is exact in the integrable case, this method can still be
applied to MBL systems due to their “emergent integra-
bility,” characterized by a complete set of local integrals of
motions (LIOMs) [16,17]. While the number of possible
configurations ζk in these LIOMs is exponential, only a
fraction of them (corresponding to small k) have significant
weights—a consequence of area law entanglement in MBL
systems [55,56]. Then, when applied to MBL systems,
the MQC method approximately counts the Lc of these
interacting LIOMs, while still exhibiting the same loga-
rithmic growth as entanglement entropy. We can further
understand our measurement in terms of OTOCs
[32,57,58]. As explained in detail in Sec. 4 of the
Supplemental Material [24], in order to extract the MQC
intensities we effectively measure the quantities

SϕðtÞ ¼ Tr½ρeqΦ†ðtÞρeqΦðtÞ�;
with ΦðtÞ ¼ UðtÞeiϕ

P
j
SjxU†ðtÞ: ð4Þ

While we can only measure OTOCs for collective operators
on the whole system, such as Φ, these OTOCs still give
some information about the spreading or localization of
correlations, since ρeq is a sum of local operators. The
information is made more accurate as we consider an
average of several OTOCs for different Φð0Þ operators,
even if we cannot measure a whole basis of a subsystem, as
required to extract the EE [59,60]. It will be interesting to
experimentally measure other OTOCs in our system, as
OTOCs have been studied in the context of information
scrambling in black holes [61,62] and disordered spin
systems [32,57,63–66].
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FIG. 4. Experimental correlations in noninteracting spin chains.
Correlation length Lc for various strength ∝ g of disordered
transverse fields, with u ¼ 0.24 and v ¼ 0 [Eq. (3)]. Errorbars are
determined from the noise in the free induction decay. The lines
are numerical simulations using 6 (solid), 10 (dotted), and 40
(dashed) spins, respectively, averaged over 126 disorder realiza-
tions.
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In conclusion, we introduced a novel metric for locali-
zation, able to distinguish between many-body and
single-particle localization. The correlation metric can be
measured experimentally, with the only requirement of
collective rotations and measurements, by extending MQC
techniques developed in NMR (which can as well be
applied to many other physical systems [58]). We also
reveal an interesting relationship between the protocol for
measuring the correlation length and the measurement of
OTOCs, thus further confirming its ability to measure the
logarithmic growth of entanglement associated with MBL.
Thanks to our control techniques, we were able to explore a
broad range of interesting behaviors in this solid-state spin
system. In particular, we observed, for the first time, many-
body localization in a natural spin system associated with a
single crystal at high temperature. We note that, while we
interpreted our results mostly based on a simplified model
(1D, nearest-neighbour couplings), the real system is more
complex due to long-range interactions and a 3D structure.
It will be thus interesting to use the tools developed in this
work to study subtler properties of localization when these
effects are highlighted by the experimental scheme.
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