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Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a
phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and
identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that
speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits
are set by a given norm of the generator of time evolution.
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The multifaceted nature of time makes its treatment
challenging in the quantum world [1,2]. Nonetheless, the
understanding of time-energy uncertainty relations is some-
what privileged [3,4]. To a great extent, this is due to their
reformulation in terms of quantum speed limits (QSLs)
concerning the ability to distinguish two quantum states
connected via time evolution. While QSLs provide funda-
mental constraints to the pace at which quantum systems
can change, a plethora of applications have been found that
well extend beyond the realm of quantum dynamics.
Indeed, QSLs provide limits to the computational capabil-
ity of physical devices [5], the performance of quantum
thermal machines in finite-time thermodynamics [6,7],
parameter estimation in quantum metrology [8,9], quantum
control [10–14], the decay of unstable quantum systems
[15–18], and information scrambling [19], among other
examples [3,4,20].
Specifically, QSLs are derived as upper bounds to the

rate of change of the fidelity FðτÞ ¼ jhψ0jψτij2 ∈ ½0; 1�
between an in;itial quantum state jψ0i and the correspond-
ing time-evolving state jψτi ¼ Ûðτ; 0Þjψ0i, where Ûðτ; 0Þ
is the time-evolution operator. More generally, quantum
states need not be pure, and given two density matrices ρ0
and ρτ ¼ Ûðτ; 0Þρ0Ûðτ; 0Þ† the fidelity reads

FðτÞ ¼
�
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0
p

ρτ
ffiffiffiffiffi
ρ0
pq �

2

. ð1Þ

The fidelity is useful to define a metric between quantum
states in Hilbert space, known as the Bures angle [21,22]:

Lðρ0; ρτÞ ¼ cos−1
ffiffiffiffiffiffiffiffiffi
FðτÞ

p
: ð2Þ

This gives a geometric interpretation of the speed limit
as the minimum time required to sweep out the angle
Lðρ0; ρτÞ under a given dynamics [23].

For unitary processes, two seminal results are known.
The Mandelstam-Tamm bound estimates the speed of
evolution in terms of the energy dispersion of the initial
state [15,16,22,24–27]. Its original derivation relies on the
Heisenberg uncertainty relation. The second seminal result
is named after Margolus and Levitin and provides an upper
bound to the speed of evolution in term of the difference
between the mean energy and the ground state energy
[28,29]. Its original derivation relies on the study of the
survival amplitude hψ0jψτi. These bounds can be extended
to driven and open quantum systems [30–35]. In addition,
the two bounds can be unified [29] so that the time of
evolution τ required to sweep an angle Lðρ0; ρτÞ is lower
bounded by

τ ≥ τQSL ¼ ℏLðρ0; ρτÞmax

�
1

E − E0

;
1

ΔE

�
; ð3Þ

where E0 is the ground state of the system, E is its mean
energy, and ΔE denotes the energy dispersion. Note,
however, that there is an infinite family of bounds in terms
of higher-order moments of the energy of the system [36].
It is widely believed that these bounds are quantum in

nature and that, as a result, exist only in the quantum world
[29]. Indeed, in the limit of vanishing ℏ, the right-hand side
of (3) equals zero, and one is led to conclude that no
“classical” speed limit exists as the inequality becomes
trivial:

τ ≥ lim
ℏ→0

τQSL ¼ 0: ð4Þ
This conclusion is further supported by the aforementioned
derivations of QSLs, which strongly rely on the framework
of the quantum theory. In particular, the Mandelstam-Tamm
bound follows from the Heisenberg uncertainty relation
[3,15], and the Margolus-Levitin inequality exploits the
notion of the transition probability amplitude between two
quantum states in Hilbert space [28,29]. We note, however,
that recent developments on the generalization of QSLs to
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open quantum systems and arbitrary quantum channels
have provided new derivations and an alternative under-
standing of QSLs [30–35]. As a result of these works, given
an equation of motion for the state of the system, QSLs
are derived in terms of a given norm of the generator of
evolution acting on the initial state of the system ρ0 or the
time-dependent state ρt (with 0 ≤ t ≤ τ). Such a formu-
lation appears not to be restricted to quantum mechanical
systems, as we show here.
In this Letter, we focus on the existence and characteri-

zation of QSLs across the quantum-to-classical transition.
We show that the conclusion on the quantum nature of
QSLs is unjustified. We demonstrate that, contrary to
common belief, similar speed limits hold in the classical
world. To this end, we adopt a phase-space formulation of
quantum mechanics and derive quantum speed limits for
quasiprobability distributions: the Wigner function. We
find that the speed of evolution is determined by a certain
norm of the Moyal product of the Hamiltonian and the
Wigner function. Using a semiclassical expansion, we then
identify a classical speed limit and show that the resulting
bound does indeed govern the evolution of the classical
phase-space probability distribution. As a result, we estab-
lish the universal existence of fundamental limits to the
pace of the evolution of a physical system, independently of
its classical or quantum nature.
Quantum speed limits in phase space.—For simplicity

and without loss of generality, we consider a one-
dimensional system for which the phase-space representa-
tion is given by the Wigner function defined as [37,38]

Wtðq; pÞ ¼
1

πℏ

Z
hq − yjρ̂tjqþ yie2ipy=ℏdy; ð5Þ

where hqjρ̂tjq0i denotes a density matrix in the coordinate
representation. It is well known that Wt is a quasiprob-
ability distribution that takes real but possibly negative
values. We consider the Wigner function of the initial state
W0 and of the time-dependent state Wt generated via
unitary dynamics with a time-independent Hamiltonian.
The fidelity between any two pure states with respective
density matrices ρ̂0 and ρ̂t can be obtained as the trace in
phase space of the corresponding Wigner functions:

FðtÞ ¼ Trðρ̂0ρ̂tÞ ¼
Z

d2ΓW0Wt; ð6Þ

where d2Γ ¼ 2πℏdqdp, for short.
To derive a QSL, we compute the instantaneous rate of

change of the fidelity as a function of time. This can be
done using the equation of motion of the Wigner function:

∂Wt

∂t ¼ ffH;Wtgg ¼
1

iℏ
ðHqp⋆Wt −Wt⋆HqpÞ; ð7Þ

where the Moyal bracket ffA;Bgg can be explicitly written
in terms of the Moyal product

Hqp⋆Wt ≡Hqp exp

�
iℏ
2

∂q
 � ∂p

�!
−
iℏ
2

∂p
 � ∂q

�!	
Wtðq; pÞ

ð8Þ

and where Hqp ¼
R
dxhq − x=2jĤjqþ x=2i expðipx=ℏÞ

denotes the Weyl ordered Hamiltonian operator in phase
space. From Eqs. (6) and (7), it follows that the rate of
change of the fidelity is set by

_FðtÞ ¼
Z

d2ΓW0ffH;Wtgg

¼
Z

d2ΓffH;W0ggWt; ð9Þ

where we have used integration by parts to derive the
second line. Using the Cauchy-Schwarz inequality, one
finds

j _FðtÞj ≤
�Z

d2ΓW2
t

Z
d2ΓffH;W0gg2

	
1=2

: ð10Þ

The purity of a density matrix is always lower than or
equal to unity, so

R
d2ΓW2

t ≤ 1, where the equality is
reached for pure states or unitarity dynamics, as considered
here. As a result,

j _FðtÞj ≤ vΓ ≔
�Z

d2ΓffH;W0gg2
	

1=2
; ð11Þ

and we find an upper bound vΓ to the speed of evolution
in phase space, with the dimension of frequency. This
bound is, in fact, dictated by the energy variance of the
initial state, and for pure states vΓ ¼

ffiffiffi
2
p

ΔE=ℏ, with
ΔE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH2i − hHi2

p
, as we show in Ref. [39]. A time

integration between t ¼ 0 to t ¼ τ readily gives

1 − FðτÞ
vΓ

¼ τQSL ≤ τ; ð12Þ

which is already a QSL in phase space. Making use of the
fact that 0 ≤ FðtÞ ≤ 1 to parametrize the fidelity in terms of
the Bures angle

Lðρ0; ρtÞ ¼ cos−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

d2ΓW0Wt

s !
; ð13Þ

that satisfies FðtÞ ¼ 1 − sin2 Lt, we can rewrite the phase-
space QSL as

τQSL ¼
sin2Lðρ0; ρτÞ

vΓ
¼ 1 − FðτÞffiffiffi

2
p ℏ

ΔE
: ð14Þ

Equation (14) constitutes a QSL of the Mandelstam-Tamm
type for the Wigner function in phase-space quantum
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mechanics. The upper bound to the speed of evolution in
phase space vΓ has units of frequency and is set by the
action of the Moyal bracket on the initial Wigner function
that is related to the energy variance of the initial state. The
distance between states is defined by the Bures angle
Lðρ0; ρtÞ as a natural statistical distance [21] that is
dimensionless and independent of ℏ. Note, however, that
it is possible to derive alternative QSLs by considering
other distances either in the space of density operators [35]
or in phase space [40]. In what follows, we first use a
semiclassical expansion to identify a semiclassical speed
limit and then combine the results with an operational
treatment of quantum dynamics to identify a classical
speed limit.
Speed limits across the quantum-to-classical transi-

tion.—We recall that the Moyal bracket (7), in a ℏ
expansion, reduces to the Poisson bracket so that

ffWt;Hgg ¼ fWt;Hg þOðℏ2Þ; ð15Þ

where the action of the Poisson bracket on a function f is
given by

ff;Hg ¼ ∂H
∂p

∂f
∂q −

∂H
∂q

∂f
∂p ; ð16Þ

and rules the dynamics in classical statistical mechanics
according to the (classical) Liouville equation. As a result,
to leading order in the semiclassical ℏ expansion of the
equation of motion for the Wigner function Eq. (7), the
speed limit in phase space does not vanish. In particular,
the semiclassical speed limit (SSL) reads

τ ≥ τSSL ¼
sin2Lðρ0; ρτÞ

ðR d2ΓfH;W0g2Þ1=2

¼ sin2Lðρ0; ρτÞ
∥fH;W0g∥2

; ð17Þ

where ∥f∥2 ¼ ð
R jfj2d2ΓÞ1=2 is the L2 norm of f and we

emphasize that ∥fH;W0g∥2 has frequency units.
Let us discuss this expression in detail. The Moyal

product provides a one-parameter deformation of the
noncommutative algebra in quantum mechanics and of
the commutative algebra in classical phase space according
to Eq. (15). By reformulating QSLs in terms of Wigner
functions, this correspondence leads to the identification of
a SSL in phase space. The distanceLðρ0; ρτÞ between states
ρ0 and ρτ is well defined whether these states are valid
classical states (i.e., with a positiveWigner function) or not.
As a result, Eq. (17) constitutes the semiclassical limit of
the Mandelstam-Tamm time-energy uncertainty relation.
Using Hamilton’s equation of motion

∂Wt

∂t ¼ fH;Wtg; ð18Þ

we interpret the upper bound to the speed of evolution as
the root mean square of the initial rate of change of the
Wigner function at t ¼ 0 averaged over phase space, i.e.,

vSSLΓ ¼ ∥fH;W0g∥2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

d2Γð∂tWtjt¼0Þ2
s

: ð19Þ

Alternatively, introducing the Liouvillian iL̂Wt¼−fH;Wtg,
we can restate the SSL as

τSSL ¼
sin2 LðW0;WτÞ

∥L̂W0∥2
: ð20Þ

As in the quantum case (14), the SSL is set by a given norm of
thegenerator of evolution L̂ averaged over the initial stateW0.
We note that this expression still contains an explicitℏ both in
the integration measure and in the definition of the Wigner
function.
Classical speed limit.—To identify a classical speed limit

(CSL) from the semiclassical expression (20), we resort to
the operational dynamic modeling developed by Bondar
et al. [41,42]. The equivalence of the evolution of dynami-
cal average values in the quantum and classical domain via
Ehrenfest theorems yields a relation between the classical
phase-space probability density ϱtðq; pÞ and the Wigner
function Wtðq; pÞ:

ϱtðq; pÞ ¼ 2πℏWtðq; pÞ2: ð21Þ

Note that the factor 2πℏ, so far accounted for in d2Γ,
can be interpreted as dividing the phase-phase into cells of
area 2πℏ [43], which corresponds to the Böhr-Sommerfeld
quantization rule in the “old” quantum theory. The normali-
zation of a pure quantum state jψ ti carries over the classical
distribution

R
2πℏdqdpWtðq; pÞ2 ¼

R
dqdpϱtðq; pÞ ¼ 1.

Accordingly, the fidelity (6) reduces to the
Bhattacharyya coefficient [44]

BðtÞ ¼ Bðϱ0; ϱtÞ ¼
Z

dqdp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ0ðq; pÞϱtðq; pÞ

p
ð22Þ

that is related to the Hellinger distance Hðϱ0; ϱtÞ via the
identity BðtÞ ¼ 1 −Hðϱ0; ϱtÞ2. Note that Bð0Þ ¼ 1 due to
the normalization condition. The Bures angle becomes

LB ¼ cos−1
ffiffiffiffiffiffiffiffiffi
BðtÞ

p
; ð23Þ

and the CSL thus reads τ ≥ τCSL with
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τCSL ¼
sin2LBðϱ0; ϱτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dqdpð∂t

ffiffiffiffi
ϱt
p jt¼0Þ2

q ¼ sin2LBðϱ0; ϱτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dqdpfH;

ffiffiffiffiffi
ϱ0
p g2

q
¼ 1 − BðτÞ

∥L̂ ffiffiffiffiffi
ϱ0
p ∥2

; ð24Þ

where we identify the denominator with the upper bound to
the classical speed of evolution vCSLΓ ¼ ∥L̂ ffiffiffiffiffi

ϱ0
p ∥2 and L̂ is

the classical Liouville operator satisfying ∂ϱt þ iL̂ϱt ¼ 0.
This is our main result and constitutes a classical version of
the Mandelstam-Tamm bound.
It is worth emphasizing that this bound can be derived

independently of the semiclassical approach by making
exclusive reference to the classical Hamiltonian formalism.
Indeed, the rate of change of the Bhattacharyya coefficient
is given by

_Bðϱ0; ϱtÞ ¼
Z

dqdp
ffiffiffiffiffi
ρ0
p _ϱt

2
ffiffiffiffi
ϱt
p : ð25Þ

Using Liouville’s equation, we can rewrite the rate of
change of the classical probability distribution to find

_ϱt
2
ffiffiffiffi
ϱt
p ¼ fH; ϱtg

2
ffiffiffiffi
ϱt
p ¼ fH;

ffiffiffiffi
ϱt
p g: ð26Þ

To obtain a classical speed limit that depends only on the
initial state, as opposed to its time evolution, it is conven-
ient to shift the action of the Poisson bracket to the initial
state ϱ0. This is readily accomplished by an integration by
parts, assuming ϱt vanishes at the end points of the
integration, that yields

_Bðϱ0; ϱtÞ ¼ −
Z

dqdpfH;
ffiffiffiffiffi
ρ0
p g ffiffiffiffi

ϱt
p

: ð27Þ

Use of the Cauchy-Schwarz inequality and the normaliza-
tion condition

R
dqdpϱt ¼ 1 lead to

j _Bðϱ0; ϱtÞj ≤
�Z

dqdpfH;
ffiffiffiffiffi
ρ0
p g2

	
1=2

; ð28Þ

which upon integration over the time variable from t ¼ 0 to
t ¼ τ yields Eq. (24), given that 1 − BðtÞ ¼ sin2 LB.
Note that we consider only smooth classical phase-

space distributions, for which vCSLΓ ¼ ∥∂t
ffiffiffiffi
ϱt
p jt¼0∥2 is well

defined. For a singular distribution of the form ϱtðq; pÞ ¼
δ½q − qclðtÞ�δ½p − pclðtÞ�, characterizing a certain trajectory
of a classical particle, the upper bound to the phase-space
velocity ∥L̂ ffiffiffiffiffi

ϱ0
p ∥2 is singular and needs to be regularized.

In this limit, the CSL is expected to vanish as the
trajectories ϱtðq; pÞ and ϱtðq; pÞ0 ¼ ϱtðqþ ϵq; pþ ϵpÞ
are distinguishable for any ϵq, ϵp with jϵqj > 0 and
jϵpj > 0 in the sense that Bðϱ0; ϱ0tÞ ¼ 0 and LB ¼ π=2.
Quadratic Hamiltonians.—The existence of classical

speed limits and their correspondence with their quantum

counterpart become self-evident whenever the Hamiltonian
driving the evolution is quadratic in the position and
momentum operators. The equation of motion of the
Wigner function (7) simplifies, and the phase-space gener-
ators of evolution in classical andquantumdynamics are then
equivalent. In the classical case, for a time-independent
Hamiltonian, the corresponding canonical transformations�

q

p

	
¼
�
α β

γ δ

	�
q0

p0

	
ð29Þ

are elements of the two-dimensional real symplectic group
Spð2;RÞ. In the quantum case, the phase-space propagator
that determines the evolution of the Wigner function via the
identity

Wnðq;p;tÞ¼
ZZ

dq0dp0Kðq;pjq0;p0ÞWnðq0;p0;0Þ ð30Þ

becomes

Kðq;pjq0;p0Þ¼ δ½q0−ðαqþβpÞ�δ½p0−ðγqþδpÞ�; ð31Þ

and it is therefore identical to the classical one [45]. The
quantum and semiclassical phase-space limits, Eqs. (14)
and (17), are identical in this case. When the generator
of evolution is explicitly time dependent, a representation
of the corresponding canonical transformations is still
possible.
For the sake of illustration, we focus on the time-

dependent harmonic oscillator:

Ĥ ¼ p̂2

2m
þ 1

2
mωðtÞ2q̂2; ð32Þ

for which quantum speed limits have been reported with
multiple applications including the characterization of
control protocols [13,14,46–48] and the performance of
quantum thermal machines [6]. As shown in Ref. [39], in
the quantum case, the Wigner function of an eigenstate
at t ¼ 0 evolves under a modulation of the trapping
frequency ωðtÞ according to

Wnðq; p; tÞ ¼ Wn

�
q
b
; bp −mq _b; 0

	

¼ ð−1Þ
n

πℏ
e−ð2=ℏω0Þ½ðP2=2mÞþð1=2Þmω2

0
Q2�

× Ln

�
4

ℏω0

�
P2

2m
þ 1

2
mω2

0Q
2

	�
; ð33Þ

that we explicitly find in terms of the Laguerre poly-
nomials LnðxÞ and the canonically conjugated pair of
variables

Q ≔
q
b
; P ¼ bp −mq _b; ð34Þ
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associated with the matrix�
α β

γ δ

	
¼
�

1=b 0

−m _b b

	
:

The time-dependent scaling factor bðtÞ > 0 is the solution
of the Ermakov equation, b̈þ ωðtÞ2b ¼ ω2

0=b
3, with the

boundary conditions bð0Þ ¼ 1 and _bð0Þ ¼ 0; see, e.g.,
[49]. As a result, the dynamics arbitrarily far from
equilibrium does not alter the form of the Wigner function
and can be simply accounted for by the definition of the
conjugated pair (34).
For the ground state of the harmonic oscillator with

n ¼ 0, W0ðq; p; tÞ ≥ 0 is a smooth Gaussian distribution
for all 0 ≤ t ≤ τ. When the classical distribution is chosen
to be also of Gaussian form ρ0ðq; pÞ ¼ expð−q2=σ2q −
p2=σ2pÞ=ðπσqσpÞ, the CSL in Eq. (24) equals the
quantum and semiclassical phase-space limits, Eqs. (14)
and (17), provided that σq ¼ x0=

ffiffiffi
2
p

and σp ¼ ℏ=ðx0
ffiffiffi
2
p Þ

as dictated by the correspondence (21); see [39]. From
the exact dynamics ρtðq; pÞ ¼ ρ0ðQ;PÞ, we find the
Bhattacharyya coefficient

Bðϱ0; ϱtÞ ¼ 2

�ð1þ b2Þ2
b2

þ
�
mσx _b
σp

	2�−1=2
; ð35Þ

while the upper bound for the phase-space speed of
evolution is set by

vCSLΓ ¼ ∥fH;
ffiffiffiffiffi
ρ0
p g∥2 ¼

mσxjb̈ð0Þj
2σp

: ð36Þ

While the generalization of the CSL (24) to time-dependent
generators is straightforward [39], we focus on the case
when the driven Hamiltonian is constant for t > 0 and let
the frequency of the trap be suddenly turned off at t ¼ 0. It
then follows that bðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

0t
2

p
and b̈ð0Þ ¼ ω0. To

illustrate these results, we show in Fig. 1 how the character-
istic velocity in the phase space of vCSLΓ in (36) remains an
upper bound to the instantaneous phase-space velocity set
by the absolute value of the Bhattacharyya coefficient
derivative during the course of the evolution.
In conclusion, we have shown that there exist funda-

mental speed limits to the pace of evolution of an arbitrary
physical system, in both the classical and quantum worlds.
To this end, we have introduced quantum speed limits in
phase space and derived their semiclassical limit. Their
comparison should be useful to identify scenarios in which
the quantum dynamics provides a speedup over the
classical evolution. From the semiclassical limit, we have
further identified a family of classical speed limits that
governs the classical Hamiltonian dynamics in phase space.
In the quantum, semiclassical, and classical settings, speed
limits are universally set by a given norm of the generator of

the dynamics and the state of the system under consid-
eration. Our results provide further insight on the nature of
time-energy uncertainty relations, speed limits in arbitrary
physical process, and the limits of computation.
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Note added.—Recently, we learned about Ref. [50] which
finds similar results.
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