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Multilayer networks describe well many real interconnected communication and transportation systems,
ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in
which the nodes have a limited capacity of storing and processing the agents moving over a multilayer
network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of
agents seeking for uncongested paths. The study of the network performance under different layer
velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of
served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer
size at which the travel time is minimum and of its dependence on the velocity and number of links at the
different layers. Phenomena reminiscent of the slower is faster effect and of the Braess’ paradox are
observed in our dynamical multilayer setup.
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Extensive studies on congestion phenomena in complex
networks [1] have highlighted the role of routing strategies
[2–7] and network topologies [8–10] on the propagation of
faults and on the emergence of congestion [11–15].
Recently, multilayer network models have been introduced
to better describe complex systems composed of intercon-
nected networks [16–19]. Diffusion processes [20–22] and
congestion have also been explored in the context of
multilayer networks [23,24]. For instance, Ref. [25] has
shown that multiplexity can induce congestions that other-
wise would not appear if the individual layers were not
interconnected. Also the effects on congestion of the
mechanism of changing layer as a function of the velocities
of the links of two layers has been analyzed [18]. However,
essential aspects of the dynamics of congestions, which can
play even a more important role in multilayer systems, are
still missing. First, nodes and links have been treated as
static entities, in the sense that the dynamical effects of the
congestion on the node queue length and agents’ routing
have not been explicitely considered [18,24–26]. Second,
the capacity of storing agents or packets at nodes has
usually been assumed infinite [25], neglecting the dynami-
cal evolution of a node to be available or unavailable during
time according to whether its queue is uncongested or
congested, respectively.
In this Letter, we introduce a multilayer mobility model

capturing both the dynamic nature of the queues at the
network nodes, and also the consequent congestion phe-
nomena induced by the limited storage capacity, i.e., finite
buffer size, of the nodes of any real multilayer system. Our

model well describes the mechanisms of congestion occur-
ring at the routers of a multilayer communication network.
The main ingredient of the model is that it takes into
account that agents seek for uncongested paths during their
navigation. This makes the routing strategy of the agents
explicitly dependent on the dynamic effects of the con-
gestion at the nodes rather than at the links of the network
[2–4]. Moreover, in our model a node is unavailable when
congested and again available when it becomes uncon-
gested. Therefore, the onset of congestion triggers a sort of
temporary fault of the node and affects the routing of
agents, which seek for uncongested paths. In this respect,
the model allows us to investigate the effect of temporary
faults on the performance of a multilayer network, extend-
ing the analysis originally performed on single-layer net-
works, and limited to permanent faults [10,27,28]. Finally,
the combination of the above dynamical effects yields a
coevolving multilayer network due to the circular argument
by which the agents’ routing depends on the congestion
phenomena and the latter is in turn influenced by the
agents’ behavior to seek uncongested paths. This leads to
novel multilayer phenomena characterized by the existence
of an optimal value of the node buffer size where the travel
time is minimum, and which critically depends on the
topologies and on the velocities of the different layers.
The model.—The backbone of our system is modeled as

a weighted multilayer network with L layers and Nα nodes
at layer α, with α ¼ 1; 2;…; L. Agents moving on the
network can, for instance, represent information packets in
a communication system: they are generated at the nodes of
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the network and move from a node to one of its neighbors
until they arrive at their assigned final destination, where
they are removed from the network. The dynamics of the
nodes and links is illustrated in Fig. 1 of the Supplemental
Material [29]. The main quantity of interest to characterize
the state of node i at layer α and at time t, is its queue length
qαi ðtÞ, which represents the number of agents at the node.
Additionally, we assume that each node i at layer α is
characterized by its maximum resourceBα

i , representing the
node capability to store agents, for instance, the buffer size
of a router in a computer network. This implies that qαi ðtÞ ≤
Bα
i for all t. We also adopt first-in-first-out (FIFO) queues,

which means that agents are processed by the queue at any
given node in order of their arrival. The basic assumption of
our transportation model is that the agents have a global
knowledge of the network [4], and move from their origins
to their destinations by following minimum-weight paths.
Since our aim is to model the dynamics of agents that try to
minimize distances but also to avoid congested nodes [2–4],
we assume that the link weights depend on the node queue
lengths [10,30]. Namely, the weight wαβ

ij of the link con-
necting node i at layer α to node j at layer β is defined as

wαβ
ij ðtÞ ¼ cγαβij þ qβj ðtÞ

Bβ
j − qβj ðtÞ

; ð1Þ

where γαβij for α ≠ β represents the time of going from node i
at layer α to node j at layer β, and c is the equivalent cost per
unit time, so that cγαβij is the intrinsic cost of traversing the
link. Similarly, cγααij is the intrinsic cost of link ði; jÞ in layer
α. The second term in the right-hand side of Eq. (1)
represents the cost perceived by the agents and due to the
level of congestion found at the node j. Notice that
wαβ
ij ðtÞ ∈ ½cγαβij ;∞Þ, with the weight of the link from i to

j taking its minimum value cγαβij when the queue at j is

empty, i.e., when qβj ðtÞ ¼ 0, while theweight diverges when

the queue is full, i.e., when qβj ðtÞ ¼ Bβ
j . At each time step,

each agent computes its next move on the network based on
the set of weights associated to the links at time t. Let us
denote as Rα

i ðtÞ the resulting net flow at node i of layer α:

Rα
i ðtÞ ¼ Iαi ðtÞ þ δIαi ðtÞ −Oα

i ðtÞ − δOα
i ðtÞ; ð2Þ

where Iαi ðtÞ andOα
i ðtÞ are, respectively, the queue incoming

and outgoing rate from and to other nodes, while δIαi ðtÞ and
δOα

i ðtÞ are the number of agents generated or removed at
node i and layer α, at each time. In particular, the output rate
Oα

i ðtÞ of node i is related to the capacity of the node to serve
agents and route them towards other nodes, and we assume
that each node i is characterized by a maximum service rate
Ôα

i , such that Oα
i ðtÞ ≤ Ôα

i . Once all the values of R
α
i ðtÞ are

calculated, we adopt the following update rule of node
queues:

qαi ðtþ 1Þ ¼
8
<

:

0 qαi ðtÞ þ Rα
i ðtÞ ≤ 0

qαi ðtÞ þ RiðtÞα 0 < qαi ðtÞ þ Rα
i ðtÞ < Bα

i

Bα
i Bα

i ≤ qαi ðtÞ þ Rα
i ðtÞ;

ð3Þ
for each α ¼ 1;…; L and i ¼ 1;…; Nα. Notice that the
waiting time spent by an agent at node i at time t isqαi ðtÞ=Ôα

i ,
and can take a maximum value of Bα

i =Ô
α
i . The model takes

into account that agents seek uncongested paths during their
navigation. Moreover, agent loss may also occur in the
model because of the congestion (i.e., packet loss in
communication networks). Specifically, an agent is lost at
a node when it cannot be forwarded to one of the neighbor-
ing nodes because they are all congested. Summing up, the
control parameters of our network model are Bα

i , Ô
α
i , γ

αβ
ij ,

∀ i, j, α, and β.
Results.—To illustrate the rich dynamical behavior of the

model under different control parameters, we consider a
network with two layers (L ¼ 2) ofN1 ¼ 150 andN2 ¼ 30
nodes, respectively. The two layers are generated as geo-
metric random graphs by randomly placing the nodes on
the unit square and connecting two nodes i and j if their
Euclidean distance is Rij < 0.11 (layer 1) or 0.11 ≤ Rij ≤
0.19 (layer 2) [25,31]. The aim is to represent with layer 1 a
denser network with high clustering coefficient and short-
range connections, and with layer 2 a network of fewer
nodes with long-range connections. We also assume that
layer 2 is a faster transportation system. Hence, we fix
γ11ij ¼ γ11 ¼ 1 and 0 < γ22ij ¼ γ22 ≤ γ11 ∀ i; j, so that we
can explore different values of the time ratio γ ¼ γ22=γ11 in
the range (0, 1]. As the time to traverse a link is inversely
proportional to the velocity or bandwidth of the link, in
the following we will refer to γ as the velocity ratio. We
also fix c ¼ 1, γ12ij ¼ γ12 ¼ 1, Ô1

i ¼ Ô2
i ¼ Ô ¼ 640 and

B1
i ¼ B2

i ¼ B ∀ i; j. At each time step t, and for each node
i and layer α, we generate with a probability ρ an agent to
be delivered to each of the remaining N1 þ N2 − 1 of the
multilayer network, such that δIαi ðtÞ is on average equal
to ρðN1 þ N2 − 1Þ ∀ i; α.
To evaluate the performance of the system we have

looked at quantities such as the average travel time and the
number of lost agents for various velocity ratios γ ∈ ð0; 1�
and buffer sizes B. All the performance indexes are
obtained as averages when the network has reached a
steady state condition. Figure 1 reports the average travel
time T, defined as T ¼ 1=Na

PNa
a¼1ðtOUTa − tINa Þ, where

tOUTa and tINa are, respectively, the times at which agent
a enters the network and arrives at its destination, and Na is
the total number of delivered agents.
The plots ofT as a function of γ for buffer sizesB ¼ 10, 40,

and 103 show that the travel time decreases when γ increases,
i.e., when we decrease the velocity of the faster layer 2,
keeping fixed the velocity of layer 1. This is an example, in a
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multilayer setup, of the slower is faster (SIF) effect reported
for several complex systems in the literature and in which the
decrease of the velocity can yield to an improvement of the
system performance [32]. The increase of T we observe here
when γ decreases is due to the increasing waiting times
qðtÞ=Ô experimented by agents along the preferential and
bottlenecked paths induced by the increasingly different
velocities of the two layers. Interestingly, the effect does
not occur in a static model not accounting for the queue
dynamics [18]. The results of the static model, reported for
comparison as dashed line, show indeed that T decreases for
decreasing values of γ. As expected, our model tends to the
dashed line of the static model for very large values of B (see
the curve for B ¼ 108), since the link weights in Eq. (1)
become independent from the queue qðtÞ when B → ∞.
An analogous of the Braess’ paradox, in which the

addition of resources in terms of links leads to a worsening
of network performance, shows up in our model in the
dependence of T on the buffer (i.e., the addition of physical
space to the nodes). In fact, when we increase B from 10 to
40 we reduce congestion and agent losses and, as expected,
we observe a drop of the travel time (for any value of γ).
However, a further increase of the node buffer size does not
lead to an additional improvement of the system, as we
observe, for instance, at B ¼ 103, an increase of the travel
time T. To better highlight the nonmonotonic dependence
of the average travel time from the node buffer size B
observed in Fig. 1, in panel (a) and (b) of Fig. 2 we report T
as a function of B, together with the agent lossΛ, defined as
the percentage of agents that are unable to reach their
destination with respect to the total number of generated
agents. We adopt a logarithmic scale for B, and we show the

results for three different velocity ratios, namely, γ ¼ 0.05,
0.5, and 1. We first describe the case γ ¼ 1. In the limit
B → ∞ the network is uncongested and Λ → 0. By
decreasing the value of the buffer size, the agent loss Λ
starts to increase at B≃ 102 and triggers nodes alternatively
being full and empty. In this regime, the average queue
length q̄ is well approximated by q̄≃ B=2 with an average
waiting time q̄=Ô≃ B=2Ô, so that the average travel time
T linearly decreases with the buffer size B. This behavior
holds until a value BTmin

≃ 40, at which the average travel
time T assumes its optimal value. Finally, when the buffer
size is reduced to values B < BTmin

, a congestion collapse
occurs with a sharp increase of agent loss. In such high-
congestion regime, the average travel time T increases
because of the high number of alternative but longer paths
available. We can notice from panel (c) of Fig. 2 that, for
B ∈ ½40; 80�, the increase in the travel time is related to the
increase of the network maximum betweenness centrality
Cmax, which is upper bounded by the node buffer size. This
is in agreement with the results found in Refs. [33,34] for
single-layer networks. When B > 80, the increase in T is

FIG. 1. Average travel time T of delivered agents as a function
of the velocity ratio γ in our dynamic multilayer mobility model
with three different values of node buffer size B ¼ 10, 40, 103,
108 (continuous lines) and in the corresponding static model
(dashed line). Numerical results are reported as symbols, with the
error bars representing fluctuations over random agent gener-
ations and 100 different network realizations.

(a)

(b)

(c)

FIG. 2. Average travel time T (a), percentage of agent loss Λ
(b), and (c) maximum betweenness centrality Cmax for the
dynamic multilayer mobility model as functions of the node
buffer size B, and for three different values of velocity ratio
γ ¼ 0.05, 0.5, 1.
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mainly due to the increased waiting time qðtÞ=Ô of the
agents in a queue, combined with the nonlinear dynamics
of link weights. Conversely, the maximum betweenness
centrality Cmax decreases, as the agents go through a lower
number of more congested nodes. The curves for γ < 1
reported in Fig. 2 indicate in general a worsening of the
travel time T with respect to the case γ ¼ 1. Specifically, for
B ≫ BTmin

, the increase of the average travel time T is due
to the increase of the waiting time qðtÞ=Ô on preferential
paths which gives rise to the Braess’ paradox observed
already in Fig. 1. For low value of buffer size B ≪ BTmin

,
lower value of γ makes the faster layer more and more
preferential and congested such that the paths crossed by
the agents include a larger number of links and nodes of the
slower layer. The effect is an increase of T for decrease of γ.
In this case the number of agent loss is almost the same but
it is differently distributed along the multilayer networks,
with most occurring at the fast layer.
Differently, for buffer sizes around BTmin

, as shown in the
inset, the average time T is lower for higher velocity (lower
γ) as in the case of the static model. This is because the
waiting time qðtÞ=Ô can be neglected with respect to the
intrinsic time to traverse a link.
Analytical estimations of BTmin

.—The most striking
result of our model with finite storing capacity is that
the optimal value BTmin

of the buffer depends on the
velocities of the layers of the multilayer. It is, therefore,
of outmost importance to obtain an analytical expression of
BTmin

as a function of γ. We observe that, under standard
working conditions, the network is characterized by a
steady state in which the number of generated agents
equals the number of agents leaving the network at their
destination. By the Little’s law [35] we can then write

Q ¼ Nq̄
τ̄

; ð4Þ

where Q is the total generated traffic per unit time, q̄ is the
average queue length, τ̄ is the average time spent by the
agent over the network, and N ¼ N1 þ N2. To evaluate τ̄,
consider that on average the time spent by an agent from the
output of a node i to the output of its neighbor j is γ̄ þ q̄=Ô,
namely, the sum of the average intrinsic time to cover the
link ði; jÞ and the average waiting time at the queue q̄=Ô.
The value γ̄ can be evaluated as γ̄ ¼ ½ðγ11K1 þ γ22K2þ
γ12K12Þ=ðK1 þ K2 þ K12Þ�, where K12, K1, and K2 are,
respectively, the number of interlinks and of links in the two
layers. Hence, the average time spent by an agent on a
typical path is τ̄ ¼ h̄½γ̄ þ ðq̄=ÔÞ�, where h̄ is the average
number of links on the shortest path. Since the buffer BTmin

is associated to the onset of the network congestion
collapse, i.e., when all queues are full and we have
q̄=BTmin

≃ 1, by plugging the expression of τ̄ in Eq. (4)
and solving it for q̄, we get the following estimate for the
minimum buffer size,

BTmin
≃ q̄ ¼ γ̄Qh̄

N − Qh̄
Ô

: ð5Þ

In particular, for the case considered in our simulations, we
have N ¼ 120, h̄ ¼ 4.1, Q ¼ NðN − 1Þρ with ρ ¼ 0.08,
and Ô ¼ 500. For γ ¼ 0.05, γ ¼ 0.5 and γ ¼ 1 we get,
respectively, BTmin

≃ 35, BTmin
≃ 38, and BTmin

≃ 42. These
values are reported as vertical lines in the inset of Fig. 2 and
are in good agreement with the optimal values obtained
numerically. Equation (5) highlights that a faster multilayer
network, i.e., one with lower γ̄, has a lower BTmin

. This is
well confirmed by Fig. 3, where we report both the
numerically derived and the analytical prediction of
BTmin

as function of γ for multilayer networks with different
values of K1 and K2. We observe that the variation of BTmin

as a function of γ is larger when fast and slow layers have a
similar number of links. On the other hand, when the fast
layer has much fewer links than the slow layer, the value of
BTmin

of the multilayer network is almost independent on
the difference of the layer velocity. This also suggests that
even a slight improvement in the velocity of links of the
denser layer can have better effects on BTmin

than speeding
up or adding new links to the faster layer.
The analytical estimate of BTmin

provided in this Letter
can be useful to design efficient multilayer mobility
systems. In particular, the model shows that an increase
of network resources in terms of the link velocities or of the
buffer sizes can surprisingly lead to a worsening of the
performance. The first behavior is reminiscent of the SIF
effect [32] while the latter is an analogous of the Braess’

FIG. 3. Optimal buffer values BTmin
as a function of the velocity

ratio γ and for two multilayers (the first with K1 ¼ 532 and K2 ¼
130 is the one considered in the previous figures, while the
second has K1 ¼ 334; K2 ¼ 338). Numerical results are reported
as symbols, with the error bars representing fluctuations over
random agent generations and 100 different network realizations,
while the continuous lines are the theoretical predictions of
Eq. (5).

PHYSICAL REVIEW LETTERS 120, 068301 (2018)

068301-4



paradox originally defined for single layer networks [36]
and recently observed in multiplex networks as a function
of the layer average degrees [25]. Here we found both
effects in dynamical multilayer mobility networks with
finite storing capacity.
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