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Disordered fiber networks are ubiquitous in a broad range of natural (e.g., cytoskeleton) and manmade
(e.g., aerogels) materials. In this Letter, we discuss the emergence of topological floppy edge modes in two-
dimensional fiber networks as a result of deformation or active driving. It is known that a network of
straight fibers exhibits bulk floppy modes which only bend the fibers without stretching them. We find that,
interestingly, with a perturbation in geometry, these bulk modes evolve into edge modes. We introduce a
topological index for these edge modes and discuss their implications in biology.

DOI: 10.1103/PhysRevLett.120.068003

Introduction.—Recent theoretical advances in applying
concepts of topological states of matter to mechanical
systems have led to the burgeoning new field of
“topological mechanics,” where nontrivial topologies of
the phonon bands give rise to exotic mechanical and
acoustic properties [1–20].
Among many different types of topological mechanical

systems, a particularly interesting class consists of
“Maxwell lattices,” which are central-force lattices with
average coordination number hzi ¼ 2d, where d is the
spatial dimension, and are thus on the verge of mechanical
instability [2,3,16–20]. Maxwell lattices host topologically
protected phonon edge modes at zero frequency (floppy
modes). These edge modes are governed by the topology of
the equilibrium and compatibility matrices of the lattice,
which in turn are governed by the lattice geometry [2]. A
simple two-dimensional (2D) example of Maxwell lattice,
the deformed kagome lattice, as shown in Fig. 1, exhibits
different phases where the topological structure changes and
the floppy modes localize at different edges [17]. In
particular, what drives the topological transition here is a
soft strain that changes the lattice geometry, where all bonds
remain the same length and only the bond angles change. At
the topological transition, bonds form straight lines and
floppy modes penetrate infinitely deep into the bulk,
whereas in the two phases below and above the transition,
the floppy modes localize at opposite edges. In the topo-
logically nontrivial phase all floppy modes localize on the
top edge, leaving the bottom edge rigid. This physics of the
Maxwell lattices makes them both an interesting topic for
theoretical study [21–27] and good candidates for the design
of novel mechanical metamaterials where the edges can
change stiffness by orders of magnitude reversibly [17].
Most existing studies of topological mechanics are based

on periodic lattices, with only few exceptions [28,29]. In
general, topological order is robust against disorder,
because topological attributes are integer valued and remain
invariant upon the addition of disorder until they jump to a

different integer value. This robustness has been demon-
strated in various periodic lattice systems with weak
disorder. It is thus an intriguing question to ask: can
topological edge floppy modes exist in disordered systems
that are completely off lattice?
In this Letter, we study floppy edge modes in

disordered fiber networks which are not periodic in space
[Figs. 1(b)–1(d)]. Fiber networks are ubiquitous in nature,
taking the form of cell cytoskeleton and extracellular matrix,
and inman-madematerials, taking the formoffiber hydrogels
and aerogels, felt, etc., and exhibit fascinating physics
[30–41]. Using both analytic theory and numerical simula-
tion, we show that topological edge floppy modes arise in
these disordered fiber networks when they are driven away
from the simple geometry where all fibers are straight, and
these edge floppy modes lead to strongly asymmetric
mechanical properties at opposite ends of the fiber network.
These topological edge modes may have interesting conse-
quences in awide rangeof problems, such as cell cytoskeleton
under active driving and the design of smart fiber materials.
Model and results.—We choose the “Mikado model,”

which is a completely off lattice 2D fiber network model
[30,31], and modify it for our study of topological edge
modes. The original Mikado model consists of straight
fibers randomly placed on a 2D plane, with all crossing
points being free hinges [Fig. 1(b)]. The Hamiltonian of a
Mikado model can be written as

H ¼
XNfiber

i¼1

Xni−1
m¼1

ki;m
2

ðjR⃗i;m − R⃗i;mþ1j − li;mÞ2

þ
XNfiber

i¼1

Xni−1
m¼2

κi;m
2

ðΔθi;mÞ2; ð1Þ

where there are Nfiber fibers labeled by i, each has ni
crosslinks labeled bym, and R⃗i;m is the (displaced) position
of the mth cross-link on the ith fiber. The first term denotes
central force stretching energy of each fiber segment (bond)
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between neighboring cross-links (sites) m, mþ 1 along
each fiber i, with stretching spring constant ki;m and rest
length li;m. The second term denotes bending energy of the
fiber andΔθi;m ¼ θi;m − θi;m−1 is the angle change between
the two segments meeting at cross-linkm along fiber i (here
θi;m denotes the orientation of the mth segment on fiber i)
with bending spring constant κi;m.

In typical fiber networks composed of long slender
filaments, the bending stiffness is much smaller compared
to the stretching stiffness [κ=ðkl2

0Þ ≪ 1 where l0 is the
characteristic mesh size; see discussion in the Supplemental
Material [42]. For our discussion of topological mechanics
we first ignore bending stiffness and treat all fiber segments
as central-force springs (κi;m ¼ 0). Later we use numerical
simulations to verify that the essential conclusion of the
asymmetric mechanical properties due to edge modes still
holds in presence of small bending stiffness.
The original Mikado model displays an interesting

property: all floppy modes are bulk modes. This can be
seen in the following analysis. The total number of cross-
links is Ns ¼

PNfiber
i¼1 ni=2 (each cross-link is shared by two

fibers) and the total number of bonds is Nc¼
PNfiber

i¼1 ðni−1Þ
(dangling ends are removed since they do not contribute to
mechanical stability). The number of zero modes is thus
equal to the number of fibers N0 ¼ Nsd − Nc ¼ Nfiber. A
straightforward decomposition of the Nfiber zero modes is
that each fiber carries one zero mode corresponding to the
longitudinal displacement of that fiber, while keeping all
other fibers intact (the fiber segments crossing the displaced
fiber is stretched only to second order in the mode), as
shown in Fig. 1(b) [34].
The original Mikado network can be seen as a disordered

analog of the critical state of the deformed kagome lattice, in
the sense that they both have straight filaments which carry
bulk floppy modes [Figs. 1(a)–1(b)]. The deformed kagome
lattice exhibits phases (related by a soft strain from the
critical state) with different topologies where the floppy
modes localize at different edges. Can the Mikado network
also exhibit such topological transitions? The answer is yes.
Because what drives the topological transition and the

localization of the floppy modes in the deformed kagome
lattice is the change of lattice geometry (induced by the soft
strain equivalent to the q⃗ ¼ 0 bulk floppy mode), it is
natural to consider following bulk floppy modes the
original Mikado model and examine their effect on mode
localization. As shown in Fig. 1(c), we perturb the Mikado
model to create a new ground state as follows: one
arbitrarily chosen “central fiber,” c is longitudinally

displaced by a small amount Uð0Þ
c [each cross-link on this

fiber displaced by u⃗ð0Þc;m ¼ Uð0Þ
c f½sinðθc þ Θc;mÞ�=½sinΘc;m�;

−½cosðθc þ Θc;mÞ�=½sinΘc;m�g, where θc is the angle of the
central fiber, and Θc;m is the intersecting angle between the
crossing fiber at cross-link m and the central fiber]
following one floppy mode of the original Mikado model.
We choose the convention that if the fiber is pulled in the
direction pointing from cross-link 1 to nc on the central

fiber (so cross-link nc is the “head” of motion), Uð0Þ
c > 0,

and vice versa, and we ignore the resulting stress (which

is second order in Uð0Þ
c ). This geometric perturbation

leads us to a new model which we name the “modified
Mikado model.”

FIG. 1. (a) A deformed kagome lattice in its critical state
(middle, large) between two phases with different topologies in
their phonon bands (left and right, small). Blue and red arrows
show a pair of floppy modes, under periodic boundary condition
in the horizontal (x) direction and open boundary condition in the
y direction. The pair of floppy modes are on the top and bottom
edges, respectively, in the topologically trivial phase (left). The
red mode becomes a bulk mode at the transition (middle, where
the cyan stripes show the straight lines of bonds) and shift to the
top edge in the topological phase (right). (b) An example of an
original Mikado network, showing one bulk floppy mode along
fiber i (red arrows). This floppy mode is characterized by a
constant longitudinal projection of displacements along the fiber
Ui (green arrows), and the displacement vectors of the cross-links
u⃗i;m (red arrows) are perpendicular to the crossing fiber so they
are only stretched to second order. Dangling ends are shown as
dashed lines and are ignored in the analysis. (c) An example of an
original Mikado network, showing the bulk floppy mode on the
central fiber which is used to obtain the modified Mikado model

(red and green arrows showing u⃗ð0Þc;m and Uð0Þ
c , respectively,

magnified by 50 times). The enlargement below shows details

of the displacements (u⃗ð0Þc;m magnified by 10 times) in a local area
[boxed in (a)] that leads to the modified Mikado model.
(d) Floppy mode localized on the tail of the central fiber in

the modified Mikado model (u⃗ð0Þc;m too small to be visible, red and
green arrows denote u⃗c;m; Uc;m of the floppy mode, respectively).
(e) Projection of the floppy mode to each segment Uc;m [green
arrows in (d)] exponentially decrease from tail (m ¼ 1) to head
(m ¼ nc) on the central fiber.
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We then study mechanical properties of the modified
Mikado model using both analytical and numerical calcu-
lations. The analytic method we adopt to study the
modified Mikado network is based on a transfer matrix
that propagates floppy modes through cross-links in the
network. Transfer matrix methods have been broadly used
in various fields, including wave propagation, quantum
mechanics, and statistical mechanics to solve problems by
decomposing systems into layers of lower dimensions. The
way we apply the transfer matrix on the Mikado network is
similar as in Ref. [25] with the important difference that in
Ref. [25] floppy modes propagate through rows of a
periodic lattice, whereas here floppy modes are propagated
through individual cross-links in the disordered network.
When a fiber is not straight, floppy modes longitudinal

projection is different from segment to segment in the
modified Mikado model. Relating floppy-mode displace-
ment of each cross-link fu⃗i;mg to its longitudinal projection
on each fiber segment fUi;mg, we obtain an equation at
each cross-link [Fig. 2(a)]

M
�
Ui;m−1

Uj;n−1

�
¼

�
Ui;m

Uj;n

�
; ð2Þ

with the transfer matrix at this cross-link (which is labeled
mth on fiber i and nth on fiber j) is

M ¼
0
@

sinðΘi;m−Δθi;mÞ
sinΘi;m

sinΔθi;m
sinΘi;m

− sinΔθj;n
sinΘi;m

sinðΘi;mþΔθj;nÞ
sinΘi;m

1
A; ð3Þ

where Θi;m ≡ θj;n−1 − θi;m−1. This equation serves as a
“transfer matrix” for segment displacements at cross-links
for an arbitrary floppy mode in the modified Mikado
model. For any input of boundary condition in terms of
segment displacements on one end of each fiber (remember
N0 ¼ Nfiber), we can calculate the floppy mode displace-
ments throughout the whole network.
With this transfer matrix, we can study general floppy

modes in the modified Mikado model. We are particularly
interested in what happens to the floppy mode that was a
bulk mode on the central fiber in the original Mikado model
[Figs. 1(b), 1(c)]. To do this, we take the boundary
condition that the first segment of every fiber is given to
be Ui;1 ¼ 0 if i ≠ c and Ui;1 ¼ U if i ¼ c; i.e., only the
central fiber has a longitudinal displacement input at
segment 1, while all other fibers are held fixed at their
segment 1. We then use the transfer matrix [Eq. (2)] to
calculate the floppy displacement on the rest of the net-
work. Figure 1(d) shows an example of such an exact
calculation, where the resulting floppy mode becomes
localized at the tail of the central fiber.
To characterize such floppy mode localization we take

the following perturbative expansion. Because fibers in the

modified Mikado model are close to straight (Uð0Þ
c is small),

all Δθi;m are small, which permits a perturbative expansion

of the transfer matrix at small bending angles (represented
generally by Δ) and allows further analysis. Following the
central fiber, we find that at each cross-link (for more
details see the Supplemental Material [42]),

Uc;m ¼ ½1 − Δθc;m cotΘc;m þOðΔθ2c;mÞ�Uc;m−1; ð4Þ
where we have used the fact that the input Uj;n−1 from the
fiber that crosses the central fiber is either 0 (from boundary
condition), or ofOðΔ2Þ or higher (from other cross-links on
the central fiber itself through a loop), as shown in
Fig. 2(b). Such higher-order displacements are visible in
Fig. 1(c) where we used the full transfer matrix [Eq. (3)].
This small Δ expansion also requires that the crossing
anglesΘc;m are not too small (so cotΘc;m does not diverge),
a condition naturally satisfied in most fiber networks from
excluded volume repulsion.
Equation (4) governs the growth and decay of the floppy

mode along the central fiber. If cotΘ > 0, we have Uc;m >
ð<ÞUc;m−1 if Δθi;m < ð>Þ0 [corresponding to the central

FIG. 2. (a) Illustration of the transfer matrix [Eq. (3)] applying
on a cross-link. (b) Displacements propagation (along arrows)
and order of magnitude when applying the transfer matrix on the
network with boundary condition that only cross-link 1 of the
central fiber has input U (large blue arrows for Oð1Þ, smaller
arrows for higher order in Δ and red denotes flow back to the
central fiber). (c) Asymmetric edge stiffness at two ends of the
central fiber. We perform numerical simulations to measure local
stiffness klocal against point force on two ends of the central fiber,
in modified Mikado models with different Uð0Þ. We show results
for both networks with no bending stiffness κ ¼ 0 and with
bending stiffness (controlled by fiber thickness a in unit of
characteristic mesh size l0, and we normalize klocal using
characteristic spring constant of one segment ~k). For more details
see the Supplemental Material [42]. In all cases, the head is
significantly more stiff than the tail. (d) Mikado network under
active driving from active cross-links (marked with arrows) on the
central fiber. The direction of driving is determined by the
chirality of the crossing fibers, such that the motors actively
move to the “+” end. If all crossing fibers have correlated chirality
such that their+ends are on the left, from Eq. (4), we find that the
floppy mode on the central fiber exponentially localizes to
the left.
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fiber bending up (down) at this cross-link], and vice versa
(see Supplemental Material [42] for examples of the geom-
etry). This is a very general geometric rule for edge floppy
modes, which applies to the case of topological kagome
lattices as well [e.g., following the two families of vertical
lines up in Fig. 1(c) one finds thatU increases on both]. This
rule can also be used to design new ordered or disordered
structureswhich exhibit tailored distribution of floppymodes
(see example in the Supplemental Material [42]). The
advantage of designs based on disordered structures, com-
pared to existing designs of periodic topological mechanical
metamaterials, is that they may be easier to implement in
systems such as foams and aerogels where one just need to
introduce certain asymmetry in the disordered structure to
obtain floppy edge modes, without the need to precisely
control the structure to ensure periodicity.
Now with the general rule of floppy mode evolution at

each cross-link, we come back to the question of where the
floppy mode localizes in the modified Mikado model. It is
straightforward to see that individually at each cross-link

(holding all other crosslinks fixed) the displacement Uð0Þ
c;m

points to the direction of floppy mode Uc;m decreasing

along the central fiber if Uð0Þ
c > 0 (central fiber pulled

towards cross-link nc), and vice versa. However, we need to
rigorously prove that in the modified Mikado model where
all crosslinks are displaced along the central fiber at the
same time, the disorder averaged (denoted by h� � �i) decay
rate of the floppy mode

hλi≡ 1 −
�
Uc;mþ1

Uc;m

�
ð5Þ

is positive when Uð0Þ
c > 0 and negative when Uð0Þ

c < 0
(floppy mode localizes on tail), given the condition that
different fibers have uncorrelated orientations. The proof is
included in the Supplemental Material [42].
The analytic theory discussed above is at zero bending

stiffness, but our numerical results show that when bending
stiffness is introduced, the asymmetric stiffness is still
significant [Fig. 2(c)].
The floppy edge modes we find in these disordered fiber

networks are of the same geometric origin as topological
edge floppy modes in periodic lattices. In discussions
above we constructed a real space transfer matrix method
that shows the exponential localization of floppy modes on
individual fibers. Next we show that a topological invariant,
a generalization of the “topological polarization” defined in
Ref. [2] to disordered networks, can be defined on the
central fiber that dictates its edge floppy mode. In order to
do this we start by introducing the compatibility matrixCβm

which maps site displacements (projected to bond m) Uc;m

onto bond extensions δlc;β

δlc;β ¼
Xnc
m¼1

CβmUc;m; ð6Þ

where the subscript c refers to central fiber, and subscripts
β,m label the bonds and the sites, respectively. The form of
Cβm is determined by the transfer matrix, as detailed in the
Supplemental Material [42]. We then rewrite this equation
in momentum space, where the compatibility matrix takes
the form ~Cðq1; q2Þ, where q1, q2 are momenta correspond-
ing to real space variables β, m, respectively (note that ~C
depends on two momenta as a result of disorder instead of
one in the periodic lattice case). Existence of floppy modes
is determined by the equation det ~C ¼ 0 which generally
has no solution under periodic boundary condition. Edge
floppy modes under an open boundary condition is
captured by introducing an extra complex component to
the momenta, k ¼ k0 þ ik00 (note the same k is added to
both q1, q2 because they are in the same dimension). The
sign of k00, which governs which end of the fiber the floppy
mode localizes to, is determined by a topological invariant,
the winding number

N c ¼
1

nc

1

2π

I
2π

0

dk
d
dk

Im ln det ~Cðq1 þ k; q2 þ kÞ; ð7Þ

such that N c ¼ 0, 1 correspond to the floppy mode on the
right and left, respectively. The actual solution k00 is directly
related to the decay rate λ on the fiber. Different network
geometries having the sameN c for a given central fiber are
related to one another by continuous deformations without
closing the bulk gap of that fiber. An expanded discussion
of N c is in the Supplemental Material [42].
Discussions.—In this Letter we show that in disordered

fiber networks, when individual fibers are pulled, a
topological edge floppy mode localizes on the tail of the
fiber. Now we generalize this conclusion and discuss
possible application to experimental systems.
First, the scenario of pulling fibers in a network occurs in

various situations. For example, myosin motors exert active
pulling stress on actin filaments and are a main source of
activity in the cytoskeleton. Another example is the active
pulling by tumor cells on the extracellular matrix when they
invade into surrounding tissue. It would be interesting to
explore the biological consequences of edge floppy modes
that may arise as a result of such pulling. Our discussions
above focus on 2D fiber networks and thus directly apply to
2D networks such as the actomyosin cortex that encloses
cells and the nuclear lamina that encloses cell nucleus.
Analogous floppy edge modes in 3D fiber networks will be
the next step of study and may have more interesting
consequences. In addition, although our discussions spe-
cialize to the case of one single fiber being pulled, in the
Supplemental Material [42], we include numerical results
for networks in which multiple fibers are pulled simulta-
neously, where we show edge floppy modes on each pulled
fiber, as well as how macroscopic deformations can also
generate asymmetric edge stiffness due to these edge
modes. Moreover, in the modified Mikado network we
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ignored the (higher order) stress generated in the ground
state. Including these residual stresses only shifts the
equilibrium force of the head and the tail of the fibers,
and the asymmetric stiffness remains true (see
Supplemental Material [42] for more discussion).
Second, although our discussion is based on the simple

geometric perturbation that one central fiber is pulled, the
transfer matrix method we develop applies to the more
general situation of geometric perturbation of the fiber
network, because the exponential increase or decrease of
the floppy mode only depends on the relation between the
crossing fiber orientation and the direction of bending of
the central fiber. This type of change of geometry in fiber
networks can occur in a rich variety of systems. For
example, in a network where some or all of the cross-
links are active motors that walk on particular directions on
the fibers [43–45], such coherent change in geometry can
also happen. As shown in Fig. 2(d), where a central fiber is
cross-linked to other fibers via active motors, and the
chirality of the crossing fibers are correlated, a topological
edge floppy mode emerges on the central fiber due to the
active driving.
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