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The order-disorder phase transition and the associated phase diagrams of semiflexible diblock copolymers
are investigated using the wormlike chain model, incorporating concentration fluctuations. The free energy
up to quartic order in concentration fluctuations is developed with chain-rigidity-dependent coefficients,
evaluated using our exact results for the wormlike chain model, and a one-loop renormalization treatment is
used to account for fluctuation effects. The chain lengthN and the monomer aspect ratio α directly control the
strength of immiscibility (defined by the Flory-Huggins parameter χ) at the order-disorder transition and the
resulting microstructures at different chemical compositions fA. When monomers are infinitely thin (i.e.,
large aspect ratio α), the finite chain length N lowers the χN at the phase transition. However, fluctuation
effects become important when chains have a finite radius, and a decrease in the chain length N elevates the
χN at the phase transition. Phase diagrams of diblock copolymers over a wide range ofN and α are calculated
based on our fluctuation theory. We find that both finite N and α enhance the stability of the lamellar phase
above the order-disorder transition. Our results demonstrate that polymer semiflexibility plays a dramatic role
in the phase behavior, even for large chain lengths (e.g., N ≈ 100).
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Phenomenological theories for the thermodynamic behav-
ior of molecular systems have had a profound influence
on our understanding of phase transitions and critical
phenomena. The dominant behavior in many systems is
governed by large length-scale physical effects, leading to
universal behaviors in macroscopically observable proper-
ties. However, the range of validity of phenomenological
theories is not a priori known, and there exist few exact
theoretical treatments that are capable of systematically
introducing microscopic detail into the molecular model
to probe the limits of a phenomenological treatment.
Block copolymer phase behavior, which has consider-

able fundamental and technological importance, represents
a prototypical problem where much of our understanding
hinges on coarse-grained, phenomenological models. Both
experimental and theoretical studies have explored the
phase diagram of diblock copolymers [1–3]. Random
phase approximation (RPA) and self-consistent field theory
(SCFT) are used to predict order-disorder transitions
(ODTs) and melt microstructures above the phase transition
[1,4,5], resulting in qualitative agreement of the phase
diagram between experiments and mean-field theory.
However, experimental phase transitions appear to be first
order at all chemical compositions, and a mean-field
treatment predicts a second-order phase transition for
symmetric diblock copolymers. Mean-field theory also
fails to predict the stable lamellar phase above the order-
disorder transition for nearly symmetric chemical

compositions. Furthermore, experiments observe that the
ODT occurs at significantly lower temperature than pre-
dicted by mean-field theories [6].
To account for these discrepancies, theoretical studies

turn to the effect of concentration fluctuations. The invari-
ant degree of polymerization is defined as N̄ ¼ Nα6, where
α ¼ b=v1=3 is the ratio between the Kuhn statistical seg-
ment length b and the cube root of a monomer volume v,
and N ¼ L=b is the number of Kuhn lengths for a polymer
of length L. This quantity is used to characterize the effect
of concentration fluctuations due to finite molecular weight
[7–11]. Simulations based on bead-spring and on-lattice
models show a universal ODT versus invariant degree of
polymerization [12]. However, recently, Gillard et al. found
nonuniversal features of phase transitions in polymers
with low molecular weights [9]. Such observations are
recently argued to be caused by chain polydispersity (i.e., a
distribution of molecular weight) [13]. However, the
dependence of the ODT on average molecular weight is
not explored in that work, and the chain lengths that were
simulated in Ref. [13] are as short as N ¼ 40. In this work,
we demonstrate that at such lengths polymer semiflexibility
also plays a significant role in the behavior.
All theories mentioned above assume random-walk

conformations of chains, which is only a valid assumption
for sufficiently long diblock copolymers [14]. Ostensibly,
the Kuhn length b identifies a length scale where the
polymer transitions from a rigid chain to a flexible random
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walk, but the range and impact of the crossover between
these two limiting behaviors are not immediately clear.
To find the effect of chain semiflexibility on the phase
behavior of diblock copolymers, past studies used SCFT
of wormlike chains [5,15–18], neglecting concentration
fluctuations. Simulations of semiflexible copolymers
[19–21] provide insight into the role of polymer rigidity
in the morphology and the ODT. In this work, we aim to
account for the finite molecular weight effects of diblock
copolymers by considering the effects of chain semiflex-
ibility and concentration fluctuations. We model the
diblock copolymers as wormlike chains with finite bending
rigidity. We use one-loop perturbation theory of the free
energy with chain-rigidity-dependent coefficients to incor-
porate concentration fluctuation effects. We examine both
the ODT and phase diagrams for microphase segregation,
revealing nonuniversal phase behavior over a broad range
of chain lengths N.
The wormlike chain model represents a polymer chain

as a linear elastic thread subjected to thermal fluctuations
[22,23]. However, an alternative view of the wormlike
chain is that this model represents the lowest-order cor-
rection to the Gaussian chain model [23–25]. Generally,
polymer chain behavior at intermediate length scales is
captured by incorporating all quadratic-order deformation
modes (bending, stretching, shearing, and bend-shear
coupling) [24,25]. For simplicity, we assume the chains
behave according to the inextensible wormlike chain model
in this work [22,23].
Physical interactions between segments within flexible

copolymers are frequently captured using a phenomeno-
logical isotropic interaction, formulated in terms of the
segmental density or the local volume fractions of A-type
and B-type segments. Since we consider the lowest-order
correction to Gaussian-chain statistics, the treatment of
interactions should also include a contribution from the
local structural order arising from semiflexibility, which by
symmetry is written as a local quadripole order parameter
that characterizes the local alignment of the polymer chains
[26]. Furthermore, polymer melts are frequently modeled
as incompressible, which will break down at short length
scales. In this work, we aim to capture the first correction
to the thermodynamic behavior for non-Gaussian chains
without resorting to detailed microscale interactions. Thus,
we neglect the impact of the quadripole order parameter
and melt compressibility in order to establish the dominant
role of concentration fluctuations in copolymer phase
behavior, and a future paper will focus on the influence
of such effects.
We consider a diblock copolymer melt consisting of np

semiflexible polymers. All polymers have identical chemi-
cal composition, with one A-type segment and one B-type
segment. The fraction of the A-type polymer segment is
denoted as fA. The partition function of the polymer melt is
written as

Z ¼
Z Ynp
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�
−
lp
2

Xnp
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Z
L

0

ds
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The unit tangent vector u⃗jðsÞ at monomer position s (where
s ∈ ½0; L�) on the jth polymer defines the shape of the
polymer chain. Each polymer is modeled as a worm-
like chain with persistence length lp (which scales with
the chain rigidity and gives a Kuhn length b ¼ 2lp) and
monomer cross-sectional area A. The δ-function constraint
fixes ϕ̂Aðr⃗Þ þ ϕ̂Bðr⃗Þ ¼ 1 for all spatial positions r⃗, assum-
ing incompressibility of the melt. The volume fraction
of α-type monomers is given by

ϕ̂αðr⃗Þ ¼ A
Xnp
j¼1

Z
L

0

dsσαðsÞδ½r⃗ − r⃗jðsÞ�; ð2Þ

where σαðsÞ identifies whether the segment is α type at
position s [i.e., σAðsÞ ¼ 1 for s < fAL and σAðsÞ ¼ 0
for s ≥ fAL].
Using RPA [3,4], the free-energy functional for the

concentration order parameter ψðq⃗Þ up to quartic order
is written in Fourier space as [27]

βF½ ~ψ � ¼ βF0 þ
1

2
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þ 1
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where
R
q⃗ is shorthand for

R ð1=ð2πÞ3Þdq⃗, and the concen-
tration order parameter ~ψðq⃗Þ is the Fourier transform of
deviation of local monomer concentration from its average
value [i.e., ψðr⃗Þ ¼ ϕAðr⃗Þ − fA ¼ fB − ϕBðr⃗Þ].
The vertex functions [Γnðq⃗1;…; q⃗nÞ in Eq. (3)] are

defined by Ohta and Kawasaki [27] and Leibler [4]. In
evaluating the vertex functions, the 2-, 3-, and 4-point
density correlation functions for a semiflexible chain are
required. To achieve this, we extend our exact analytical
solution of the single chain correlation functions from
2-points to 3- and 4-points on a single wormlike chain
[28–31]. Detailed calculations of the multipoint correlation
functions are shown in Supplemental Material [32], and our
research group website [33] provides PYTHON scripts to
evaluate the vertex functions.
We use the perturbative expansion of third- and fourth-

order concentration fluctuations in Eq. (3) to find the
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renormalized ODT and phase diagrams at different N and
fA at the one-loop approximation level. In our work,
we employ the one-loop approximation employed by
Fredrickson and Helfand [7], who used the Brazovskii
approach [34] to account for concentration fluctuations of
uniform and nonuniform phases.
The combined effects of molecular weight and monomer

aspect ratio on the phase transition of symmetric diblock
copolymers are shown in Fig. 1 based on one-loop
predictions of χ1LODTN. Figure 1 provides χ1LODTN versus
molecular weight N in a range of monomer aspect ratios
from α ¼ 1, 2, 4, 8, and 16 (red to blue). The mean-field
result corresponding to the limit of the melt of infinitely
thin polymers (i.e., α → ∞) is plotted in dashed black line.
The one-loop theory predicts that the phase transition to

a lamellar phase occurs at χ1LODTN ¼ χMF
S ðNÞN þ fðN; αÞ,

where both terms on the right-hand side of the equation are
dependent on finite molecular weight N. The mean-field
spinodal χMF

S ðNÞ ranges from the rigid diblock copolymer
limit (χMF

S N → 6.135) for small N [5,15–17]) to the
Gaussian chain limit (χMF

S N → 10.495) for large N [3,4].
In the large-N limit, the solution by Brazovskii-Leibler-

Fredrickson-Helfand (BLFH) theory using Gaussian chain
conformation [7],

χ1LODTN ¼ 10.495þ 41.0ðNα6Þ−1=3; ð4Þ

is recovered. Considering chain semiflexibility, we find
more pronounced elevation of χ1LODTN − χMF

S N. Particularly
in the rigid rod limit, we find

χ1LODTN ¼ 6.135þ 76.9ðNα3=2Þ−4=3: ð5Þ

Determination of the scaling laws for χ1LODTN − χMF
S N is

detailed in Supplemental Material [32]. Physically, large α

coincides with a larger number of interactions between
neighboring chains at local length scales (i.e., comparable
to b ¼ 2lp), suppressing the role of concentration fluctua-
tions (i.e., more mean-field-like). Thus, the local chain
configuration dictated by semiflexibility dominates the
behavior for small N. Conversely, small α has fewer
neighboring-chain interactions, and fluctuation effects
dominate the thermodynamic behavior before chain rigidity
influences the microstructure at small N.
This significant renormalization of the ODT for semi-

flexible diblock copolymers stresses the importance of
concentration fluctuation effects when chain molecular
weights become small. However, these predictions exhibit
a notable influence of semiflexibility for relatively large
N, with a reduction in χ1LODTN beginning at N ≈ 100 for
large α.
We examine the phase diagrams of diblock copolymers

of different molecular weights and monomer aspect ratios.
Figure 2 shows the phase diagrams of diblock copolymers
with molecular weights N ¼ 10, 50, and 100, and mono-
mer aspect ratios α → ∞ (mean-field solutions), α ¼ 4,
and α ¼ 2. These N values are chosen to be significantly
larger than N ¼ 1 in order to emphasize the impact of
semiflexibility even for large chain lengths. The mean-field
phase diagrams are constructed based on wave mode
analysis based on free energy with full angular depend-
ences of Γ3 and Γ4. The phase diagrams with finite α are
made according to a Hartree approximation [7,34].
When N ¼ 100, the mean-field phase diagram is quan-

titatively the same as the phase diagram in Fig. 8 in Ref. [4].
The body-centered-cubic phase (labeled B in Fig. 2) is the
first stable phase above the mean-field spinodal at
fA ≠ 0.5, and the cylindrical phase (labeledC) and lamellar
phase (labeled L) become more stable at higher χ,
depending on chemical composition fA. With decreasing
molecular weight, the mean-field χN at the spinodal
decreases at all chemical composition fA. However, the
relative width of the lamellar phase is qualitatively the
same as that of long polymers. The phase diagram of
diblock copolymers with N ¼ 10 qualitatively agrees
with that from Refs. [16,17].
For polymers with 100 Kuhn steps and monomer aspect

ratio α ¼ 4, fluctuation effects destroy the critical point,
and the χN at the phase transition is elevated most
noticeably near fA ¼ 0.5. The lamellar phase becomes
the first stable phase above the ODT for nearly symmetric
diblock copolymers. At smaller monomer aspect ratio
(α ¼ 2), the body-centered-cubic phase is eliminated from
the phase diagram, which predicts a qualitatively different
phase behavior than the mean-field prediction. These trends
for sufficiently long polymers is consistent with the BLFH
theory based on Gaussian chains [7].
Similar to long polymers (i.e., N ¼ 100), fluctuations

destroy the critical points for polymers of length N ¼ 50
and 10. The elevation of the phase transition near a
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FIG. 1. Phase transition χ1LODTN (predicted using one-loop
renormalization theory) of a symmetric semiflexible diblock
copolymer at different monomer aspect ratio α (in colors). Solid
curves correspond to our theory of semiflexible polymers, and the
dashed curves are predictions from a flexible polymer treatment
[Eq. (4)] [7].
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symmetric composition is more pronounced for short
polymers than that of long polymers, since fluctuations
are more significant for short polymers. The lamellar phase
domain is enlarged by smaller molecular weight when
fluctuations are captured (i.e., finite α), resulting in a
smaller region of the phase diagram for the cylindrical
phase and the absence of the body-centered-cubic phase.
This is because cylindrical and body-centered-cubic phases
have smaller surface free energy per chain than the lamellar
phase [14]. Thus, upon introduction of concentration
fluctuations, cylindrical and body-centered-cubic phases
are less stable than lamellar phases.
The Gaussian chain model does not capture all the

microscropic details of the polymers due to chain semi-
flexibility at sufficiently short length scales. When con-
sidering the concentration fluctuation effects, the small
length-scale contributions introduce a UV divergence [35],
requiring regularization techniques to account for the
divergence systematically. Similar to Gaussian chains,
the wormlike chain model is not free from this UV
divergence. In fact, UV divergence becomes more signifi-
cant as the wavelength (i.e., 2π=q) approaches the

persistence length, since the wormlike chain model predicts
a scaling of h ~ψ2ðqÞi ∼ q−1 in the limit q ≫ 1=lp. Future
work will focus on the UV divergence of semiflexible
polymers with the goal of developing a cutoff independent
theory for phase behavior of copolymers.
In this Letter, we address the phase behavior of semi-

flexible diblock copolymers using our exact results for
the wormlike chain within a field-theoretic treatment. Our
theory accounts for polymer semiflexibility and fluctuation
effects at short length scales, or equivalently for short
polymers. The result of this theory shows the breakdown of
the universal phase behavior of diblock copolymers pro-
posed by earlier works. With the technological trend of
engineering materials and devices with smaller length-scale
features, our work provides evidence of the necessity of
incorporating microscopic details in studying the thermo-
dynamics of copolymers and soft materials, even when the
feature size is significantly larger than the microscopic
correlation length (e.g., the Kuhn length). Furthermore, this
work provides a prototypical example for addressing where
microscopic detail begins to influence macroscopic thermo-
dynamic behavior.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f

5

10

15

20

25

30

 N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

10

15

20

25

30

 N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

10

15

20

25

30

 N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

10

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
A

5

10

30

A

FIG. 2. Phase diagrams of diblock copolymers with varying molecular weights N and monomer aspect ratio α. Letters (with arrows)
indicate lamellar (L), body-centered-cubic (B), and hexagonally packed cylinder (C) phases. The dashed lines at α ¼ 2, 4 are mean-field
spinodals. The circles indicate mean-field critical points χMF

S (fA ¼ 0.5), and the squares are one-loop ODTs at symmetric composition
χ1LODT (fA ¼ 0.5).
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