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Typically, the chiral magnetic Skyrmion is a single-state excitation. Here we propose a system, where
multiplet of Skyrmion states appears and one of these states can be the ground one. We show that the
presence of a localized curvilinear defect drastically changes the magnetic properties of a thin
perpendicularly magnetized ferromagnetic film. For a large enough defect amplitude a discrete set of
equilibrium magnetization states appears forming a ladder of energy levels. Each equilibrium state has
either a zero or a unit topological charge; i.e., topologically trivial and Skyrmion multiplets generally
appear. Transitions between the levels with the same topological charge are allowed and can be utilized to
encode and switch a bit of information. There is a wide range of geometrical and material parameters,
where the Skyrmion level has the lowest energy. Thus, periodically arranged curvilinear defects can result
in a Skyrmion lattice as the ground state.
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Introduction.—Skyrmions are common in nature.
Having arisen in particle physics [1], the notion of these
topological excitations is now used for liquid crystals [2],
Bose-Einstein condensates [3,4], and magnetically ordered
systems [5–8]. During the few last years, magnetic
Skyrmions have been widely considered as data carriers
in spintronic data storage and logic devices [7–16]. In
contrast to individual Skyrmions, their periodic 2D arrays,
i.e., Skyrmion lattices [17–21], are relevant for electronics,
relying on the topological properties of materials. In this
regard, dense lattices of small-sized Skyrmions facilitate
the signal readout in prospective spintronic devices by
enhancing the topological Hall effect [22–25]. Typically,
Skyrmion lattices are in-field low temperature pocket
phases [17–20] that hinder their application potential.
For this reason, much effort was made to create artificial
Skyrmions and their lattices [26–30]. The puzzling, and yet
unanswered, question is if there are systems with several
Skyrmion levels allowing transitions between them.
Furthermore, there is an intensive search for the systems
where Skyrmions can form a ground state [10,31,32].
Here we show that a Skyrmion can form a ground state

when its radius is comparable with the size of curvilinear
defect of the magnetic film. Therefore, a periodically
arranged lattice of the defects can generate a Skyrmion
lattice as a ground state. This Skyrmion lattice exists in the
zero magnetic field and for a temperature regime, which
allows individual Skyrmions, e.g., for room temperatures
[33,34]. A promising feature of the proposed curvature

induced Skyrmion lattice is its reconfigurability, which
originates from the fundamentally new property of the
Skyrmion pinned on the curvilinear defect. We demonstrate
that in this case, a Skyrmion can have two or more
equilibrium states with a very different Skyrmion radius;
i.e., one deals with a multiplet of Skyrmion states.
Remarkably, one of these Skyrmion states can have the
lowest energy in the system. The effect of multiplicity of
Skyrmion states and allowed reversible transitions between
them is the main result of this paper.
The full scale micromagnetic simulations using TetraMag

[35] perfectly confirms our theoretical predictions: the
shape and energies of the Skyrmions, switching between
different Skyrmion states by means of the external field
pulse. Reconfigurability of the Skyrmion lattices opens a
new exciting perspective for the manipulation and control
of spintronic devices relying on the topological Hall effect
[22–25].
Model.—Topologically nontrivial radial configurations

can be stabilized by various interactions. Circular or bubble
domains are stabilized by the nonlocal magnetostatic
interactions [36–39]. Frustrated next-neighbor exchange
interactions [40–42] can lead to Skyrmion formation,
which can be modified with high frequency light [43].
Here, we focus on chiral Skyrmions [6,39], whose struc-
ture, similar to the well-studied planar case [6,44–48], is
mainly determined by the competition of three local
interactions: exchange, easy-normal anisotropy, and
Dzyaloshinskii-Moriya interaction (DMI). Thus, the energy
functional of our model reads
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E ¼ L
Z

½AEex þ Kð1 −m2
nÞ þDED�dS; ð1Þ

where L is the film thickness, and the integration is
performed over the film area. The first term of the integrand
is the exchange energy density with Eex ¼

P
i¼x;y;zð∂imÞ2,

and A being the exchange constant. Here m ¼ M/Ms is the
unit magnetization vector with Ms being the saturation
magnetization. The second term is the easy-normal
anisotropy, where K > 0 and mn ¼ m · n is the normal
magnetization component with n being the unit normal to
the surface. The exchange-anisotropy competition results in
the magnetic length l ¼ ffiffiffiffiffiffiffiffiffi

A/K
p

, which determines a length
scale of the system. The last term in (1) represents DMI
with ED ¼ mn∇ ·m −m · ∇mn. Such a kind of DMI
originates from the inversion symmetry breaking on the
film interface; it is typical for ultrathin films [47,49,50] or
bilayers [51], and it results in Néel (hedgehog) Skyrmions
[10,52]. For a surface of rotation with a radially symmet-
rical magnetization distribution the same type of DMI
effectively appears in the exchange term due to curvature
effects [53–55]; thus, a direct competition takes place. This
results in a Skyrmion solution of Néel type [56].
In ourmodel, we disregard nonlocal magnetostatic effects.

Still, in stark contrast to the planar case, this is not required for

the realization of a Skyrmion lowest energy state [57].
Magnetization homogeneity along the normal direction is
assumed, which is valid for L≲ l. The used continuous
approach is physically sound for the cases when the minimal
curvature radius, as well as the radius of the Skyrmion, is
substantially larger than the interatomic distance.
A curvilinear defect of the film formed by a complete

revolution of the curve γ ¼ rex þ zðrÞez around the z axis
is considered, namely a bump, see Fig. 1(d). The parameter
r ≥ 0 denotes the distance to the axis of rotation.
Curvilinear properties of the surface at each point are
completely determined by two principal curvatures k1 and
k2, see the explicit forms in Sec. S.I in [62].
The constrain jmj ¼ 1 is utilized by introducing the

spherical angular parametrization m ¼ sin θ cosϕes þ
sin θ sinϕeχ þ cos θn in the local orthonormal basis
fes; eχ ; ng, where es is unit vector tangential to the curve
γ, and eχ ¼ n × es is the unit vector in azimuthal direction,
see Fig. 1. Expressions for Eex and ED for a general case of
a local curvilinear basis were previously obtained in
Ref. [53] and Ref. [55], respectively. Without edge effects
(e.g., for a closed surface or for an infinitely large film) the
DMI energy density can be reduced to

ED ¼ 2ð∇θ · εÞsin2θ −Hcos2θ; ð2Þ

I

I (     ) II (     )
II

(b)

(a)

(c)
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FIG. 1. Individual Skyrmion profiles and Skyrmion lattices. (a): Equilibrium magnetization states of a single Gaussian concave bump
(A ¼ −3, r0 ¼ 1 and d ¼ 1) are shown in a vertical cross section view. Arrows indicate the magnetization distribution and the normal
component mn ¼ cosΘ is color coded. The corresponding solutions ΘðsÞ of Eq. (3) are shown in the insets I, II, I0, and II0. Vertical axis
E ¼ E/EBP shows the distribution of the corresponding energy levels obtained from (S8) with EBP ¼ 8πAL being energy of the Belavin-
Polyakov soliton [66]. (b) Two Skyrmion states with big (I) and small (II) radii are shown on the same bumps arranged in a square lattice.
These Skyrmion solutions can be considered as logical states “1” and “0” of an information bit. (c) Skyrmion lattice as a ground state.
(d) Sketch of the geometry with the Cartesian fex; ey; ezg and curvilinear fes; eχ ; ng frames of reference used throughout the manuscript.
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where ε ¼ cosϕes þ sinϕeχ is a normalized projection of
the vector m on the tangential plane, and H ¼ k1 þ k2 is
the mean curvature. Expression (2) clearly shows the
appearance of an effective DMI-driven uniaxial anisotropy
proportional to the mean curvature. It has the same curvi-
linear origin as the recently obtained exchange-driven
anisotropy and DMI [53,54]. Depending on the sign of
the product DH, this anisotropy can be of easy-normal
(DH > 0) or easy-surface (DH < 0) type [67].
We show (see Sec. S.II) that the total energy (1) is

minimized by a stationary solution m ¼ sinΘes þ cosΘn,
where function ΘðsÞ ∈ R is determined by equation

∇s
2Θ − sinΘ cosΘΞþ r0r−1ðd − 2k2Þsin2Θ ¼ H0: ð3Þ

All distances are considered dimensionless and are mea-
sured in units of the magnetic length l. The prime denotes
the derivative with respect to the natural parameter s—the
arc length along γ. The radial part of the Laplace operator
reads ∇s

2f ¼ r−1ðrf0Þ0. The function rðsÞ unambiguously
determines the surface and its curvilinear properties, see
Sec. S.I. The dimensionless DMI constant d ¼ D/

ffiffiffiffiffiffiffi
AK

p
is

the only material parameter, which controls the system,
and Ξ ¼ 1þ r−2r02 − k22 þ dH.
It is important to note that any solution of Eq. (3) and its

energy (S8) are invariant with respect to the transformation
Θ → Θþ π; i.e., any solution is doubly degenerate with
respect to the replacementm → −m [68]. Consequently, one
can fix the boundary conditionΘð0Þ ¼ π at the bump center
without the loss of generality and consider different boun-
dary conditions at the infinity:Θð∞Þ ¼ nπ with n ∈ Z [69].
Following Ref. [55], one can show that the topological

charge (mapping degree to S2) of such a radially symmet-
rical solution on a localized bump reads (see Sec. S.III)
Q ¼ 1

2
½cosΘð∞Þ − cosΘð0Þ�. Therefore, only Q ¼ 0 (for

odd n) or Q ¼ 1 (for even n) values are possible. A state
with Q ¼ −1 appears under the transformation m → −m
applied to the state with Q ¼ 1.
Due to the presence of the right-hand side (rhs) driving

term in Eq. (3) the trivial solutions Θ≡ 0; π (i.e., m ¼ �n)
are generally not possible. It means that even for large
anisotropy the magnetization vector deviates from the
normal direction, except surfaces with H ¼ const, e.g.,
planar films, spherical, and minimal surfaces. Such a
prediction was previously made in Ref. [53]. In 1D curvi-
linear wires, the analogous rhs curvature gradient results in
the domain wall drift along the curvature gradient [70].
Thus, Eq. (3) reveals a leading role of the mean curvature
gradient in the curvature induced Skyrmion motion.
In the planar film limit k1 ¼ k2 ≡ 0, H≡ 0 and

rðsÞ ¼ s; thus, Eq. (3) is transformed into the well-known
]6,45,48,52 ] chiral Skyrmion equation. Such planar sys-

tems are controlled by the d parameter only. There is a
critical value d0 ¼ 4/π, which separates two ground states,
namely the uniform state m ¼ n for the case jdj < d0, and
helical periodical state for jdj > d0 [6,45,48,52]. For the

case jdj < d0, the planar form of Eq. (3) has a stable
topological (Q ¼ 1) solution—a Skyrmion that has the
following features: (i) for a given value of d the Skyrmion
solution is unique; (ii) the Skyrmion energy is always
higher than energy of the uniform perpendicular state; i.e.,
the planar Skyrmion is an excitation of the ground state. As
shown below, these well-known properties are violated in
the general case of the curvilinear defect.
Gaussian bump.—As an example, we consider a class of

localized curvilinear defects in form zðrÞ ¼ Ae−r
2/ð2r20Þ. The

amplitudes A > 0 (A < 0) correspond to bumps that are
convex (concave), and r0 determines the bump width. In
Fig. 1(a), we demonstrate stable equilibrium solutions of
Eq. (3) for certain values of parameters. There is a number of
principal differences as compared to the planar case:
(i) Topologically nontrivial (Q ¼ 1) as well as trivial
(Q ¼ 0) solutions are generally not unique: for given values
of geometrical and material parameters a set of equilibrium
magnetization states can appear with a ladder of energy
levels. Thismakes the curvilinear defect conceptually similar
to a quantum well with a finite number of discrete energy
levels. However, in contrast to the quantum systems, only
transitions between levels with the sameQ are allowed. Such
transitions are expected to be accompanied by emission or
absorption of magnons. (ii) The lowest energy level can be a
topological nontrivial (Q ¼ 1) state stabilized by local
interactions only. Therefore, curvilinear defects arranged
in a periodical lattice generate a zero-field Skyrmion lattice as
a ground state of the system, see Fig. 1(c).
Let us consider Skyrmions of small and big radii, which

are shown in Fig. 1 as states I (“1”) and II (“0”), respectively.
Their radii [71] are close to extrema points of the Gauss
curvature K ¼ k1k2, which plays an important role in a
coupling between topological defects and curvature [72,73].
However, the radius of Skyrmion II is of one order of
magnitude smaller than the radius of the Skyrmion stabilized
by the intrinsic DMI in a planar film for the same value of d.
Thus, the small radius Skyrmion is stabilized mostly by the
curvature [55,74–76], while the big radius Skyrmion is a
result of the cooperative action of the intrinsic DMI and
curvature. Structures similar to the big radius Skyrmions
were previously observed experimentally inCo/Pd andCo/Pt
multilayer films containing an array of curvilinear defects in
form of spherical concavities [77,78] as well as convexes
[79,80]. The topologically trivial state I0 can be treated as a
joint state of small and big radii Skyrmions, which com-
pensate topological charges of each other. And the state II0 is
an intermediate one between uniform m ¼ −ez and normal
m ¼ −n states, what reflects the competition between
exchange and anisotropy interactions. Note that structures
of the states I and I0, as well as states II and II0, are very close
but presence or absence of the small-radius Skyrmion at the
bump center. In Fig. 1(a) we show only stable solutions
with ΔΘ ¼ jΘð∞Þ − Θð0Þj ≤ π. Solutions with the larger
phase incursion, so called skyrmioniums [48,81] or target
Skyrmions [31,46,52,82,83], are in principle also possible.
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The appearance of Skyrmions of type I (big radius) and
type II (small radius) is a common feature of the considered
curvilinear defects, and takes place for concave as well as
for convex geometries. In order to illustrate the last state-
ment, we show the energies EðdÞ for all equilibrium states,
which appear for a convex bump, see Fig. 2. For the given
geometrical parameters we found numerically all solutions
of Eq. (3) with ΔΘ ≤ π for each value d. Then a stability
analysis (see Sec. S.IV) was applied for each of the
solutions. Finally, four stable topological (Skyrmion)
solutions (lines I–IV) and two stable nontopological
solutions (lines I0 and II0) are found. The magnetization
distributions corresponding to all these solutions, are
shown in Sec. S.VI. Lines I and II represent the above
considered big (“1”) and small (“0”) radius Skyrmions.
Remarkably, these states can have equal energies—point b
in Fig. 2. This makes the proposed application for the
storing of a bit of information more practically relevant:
switching between states “0” and “1” can be easily
controlled by the application of a pulse of a magnetic
field directed along or against the vertical axis, see Sec. S.V
and the supplemental movies. It is important that the
energy, which is absorbed by the system during the process
of switching from the big- to small-radius Skyrmion, is one
order of magnitude lower as compared to the energy of an
infinitesimally small Skyrmion:ΔE ≪ 1, see Sec. S.V. This
prevents collapse of the small Skyrmion during the
switching.
As well as for the concave geometry (Fig. 1), the big

radius Skyrmion on a convex bump can have the lowest
energy in the system (the range d < d2). It is important to
note that there is a range of parameters −4/π < d < d1

where a Skyrmion on a bump has lower energy than a
planar Skyrmion for the same d. This implies that flexible
enough planar films can spontaneously undergo a
Skyrmion induced deformation. Such a soliton-induced
magnetic film deformation was earlier predicted for cylin-
drical geometries [84–88].
In order to systematize possible Skyrmion solutions that

can appear on Gaussian bumps, we build a diagram of
Skyrmion states, see Fig. 3. We apply the same method as
for the case of Fig. 2, but restricting ourselves with
Skyrmion solutions. The following general features can
be established: (i) The range of Skyrmions existence
widens with increasing of the bump amplitude. (ii) For a
wide range of parameters (gray area “0”) the Skyrmion
centered on the bump experiences a displacement insta-
bility because the bump center is a position of unstable
equilibrium. (iii) In the vicinity of the critical value
d ¼ �4/π, there is a wide area of parameters (the dashed
area), where the Skyrmion state has the lowest energy in the
class of radially symmetrical solutions.
Conclusions.—We have generalized the Skyrmion equa-

tion for the case of an arbitrary surface of rotation.
Considering specifically a Gaussian bump we have shown
that its Skyrmion solution is generally not unique—a
discrete ladder of equilibrium Skyrmion states appears.
We propose to use a suitably shaped curvilinear defect with
a doubly degenerate Skyrmion state as carrier of a bit of
information. We also predict the effect of the spontaneous
deformation of an elastic magnetic film under Skyrmion
influence. Finally, we found a wide range of parameters,
where a Skyrmion pinned on the bump has lower energy

b

1 20

FIG. 2. Energies of different solutions. Solid lines I–IV and
dashed lines I0, II0 show energies (S8) of topological nontrivial
(Skyrmion) and trivial states, respectively, for the bump withA ¼
2 and r0 ¼ 1. Energy of the planar Skyrmion is shown by the thin
line P. States I, II, I0, II0 are similar to the same name states in
Fig. 1. States III and IV correspond to Skyrmions whose radius
much exceeds the lateral bump size, see Figs. S5 and S8. The
background filling corresponds to the number of stable Skyrmion
states, see also Fig. 3. For the case d < d2, the Skyrmion state I
has the lowest energy in the system; this corresponds to the
dashed area in the Fig. 3.

b c da

fe

1

3

2

0

FIG. 3. Diagram of Skyrmion states for Gaussian bump with
r0 ¼ 1. In the white area, the Skyrmion solutions do not exist.
The number of any other area (see legend) coincides with the
number of stable Skyrmion solutions. At least one Skyrmion
solution exists within the gray area “0”; however, the bump center
is a position of unstable equilibrium for it. Within the other areas
the corresponding number of Skyrmion are pinned at the bump
center. The horizontal dashing shows areas where the lowest
energy level is Skyrmion one. The star marker shows the
parameters of Fig. 1. The solutions spectra for points a–f are
presented in Sec. S.VI. The dotted horizontal line A ¼ 2
corresponds to Fig. 2.
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then other possible states. This feature can be used to
generate a zero-field Skyrmion lattice as ground state.

V. P. K. and D. D. Sh. acknowledge the Alexander von
Humboldt Foundation for the support. This work has been
supported by the DFG via SFB 1143, ERC within the EU
7th Framework Programme (ERC Grant No. 306277), EU
FET Programme (FET-Open Grant No. 618083), and
BMBF project GUC-LSE (FKZ: 01DK17007). We
acknowledge Professor Avadh Saxena for fruitful
discussions.

*Corresponding author.
vkravchuk@bitp.kiev.ua

†sheka@knu.ua
‡a.kakay@hzdr.de
§o.volkov@hzdr.de
∥u.roessler@ifw-dresden.de
¶j.van.den.brink@ifw-dresden.de
**d.makarov@hzdr.de
††ybg@bitp.kiev.ua

[1] I. Zahed and G. E. Brown, The Skyrme model, Phys. Rep.
142, 1 (1986).

[2] J.-i. Fukuda and S. Žumer, Quasi-two-dimensional
Skyrmion lattices in a chiral nematic liquid crystal,
Nat. Commun. 2, 246 (2011).

[3] U. Al Khawaja and H. Stoof, Skyrmions in a ferromagnetic
Bose–Einstein condensate, Nature (London) 411, 918
(2001).

[4] J.-y. Choi, W. J. Kwon, M. Lee, H. Jeong, K. An, and Y.-il
Shin, Imprinting Skyrmion spin textures in spinor Bose–
Einstein condensates, New J. Phys. 17, 069501 (2015).

[5] N. Nagaosa and Y. Tokura, Topological properties and
dynamics of magnetic Skyrmions, Nat. Nanotechnol. 8,
899 (2013).

[6] A. O. Leonov, T. L. Monchesky, N. Romming, A.
Kubetzka, A. N. Bogdanov, and R. Wiesendanger, The
properties of isolated chiral Skyrmions in thin magnetic
films, New J. Phys. 18, 065003 (2016).

[7] R. Wiesendanger, Nanoscale magnetic Skyrmions in
metallic films and multilayers: A new twist for spintronics,
Nat. Rev. Mater. 1, 16044 (2016).

[8] A. Fert, N. Reyren, and V. Cros, Magnetic Skyrmions:
advances in physics and potential applications, Nat. Rev.
Mater. 2, 17031 (2017).

[9] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track,
Nat. Nanotechnol. 8, 152 (2013).

[10] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert,
Nucleation, stability and current-induced motion of isolated
magnetic Skyrmions in nanostructures, Nat. Nanotechnol. 8,
839 (2013).

[11] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M.
Carpentieri, and G. Finocchio, A strategy for the design
of Skyrmion racetrack memories, Sci. Rep. 4, 6784 (2014).

[12] X. Zhang, G. P. Zhao, H. Fangohr, J. P. Liu, W. X. Xia, J.
Xia, and F. J. Morvan, Skyrmion-Skyrmion and Skyrmion-
edge repulsions in Skyrmion-based racetrack memory, Sci.
Rep. 5, 7643 (2015).

[13] S. Krause and R. Wiesendanger, Spintronics: Skyrmionics
gets hot, Nat. Mater. 15, 493 (2016).

[14] W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X.
Zhang, Y. Zhou, and W. Zhao, Voltage controlled magnetic
Skyrmion motion for racetrack memory, Sci. Rep. 6, 23164
(2016).

[15] J. Müller, Magnetic Skyrmions on a two-lane racetrack,
New J. Phys. 19, 025002 (2017).

[16] X. Zhang,M. Ezawa, and Y. Zhou,Magnetic Skyrmion logic
gates: Conversion, duplication and merging of Skyrmions,
Sci. Rep. 5, 9400 (2015).

[17] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,
A. Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a
chiral magnet, Science 323, 915 (2009).

[18] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Real-space observation
of a two-dimensional Skyrmion crystal, Nature (London)
465, 901 (2010).

[19] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang,
S. Ishiwata, Y. Matsui, and Y. Tokura, Near room-
temperature formation of a Skyrmion crystal in thin-films
of the helimagnet fege, Nat. Mater. 10, 106 (2011).

[20] P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A.
Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S.
Buhrandt, C. Schütte, and A. Rosch, Unwinding of a
Skyrmion lattice by magnetic monopoles, Science 340,
1076 (2013).

[21] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Sponta-
neous Skyrmion ground states in magnetic metals, Nature
(London) 442, 797 (2006).

[22] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong,
Unusual Hall Effect Anomaly in MnSi Under Pressure,
Phys. Rev. Lett. 102, 186601 (2009).

[23] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.
Niklowitz, and P. Boni, Topological Hall Effect in the a
Phase of MnSi, Phys. Rev. Lett. 102, 186602 (2009).

[24] N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K.
Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y.
Tokura, Large Topological Hall Effect in a Short-Period
Helimagnet MnGe, Phys. Rev. Lett. 106, 156603 (2011).

[25] Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki,
M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust
Formation of Skyrmions and Topological Hall Effect
Anomaly in Epitaxial Thin Films of MnSi, Phys. Rev. Lett.
110, 117202 (2013).

[26] D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P.
Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu,
Realization of ground-state artificial Skyrmion lattices at
room temperature, Nat. Commun. 6, 8462 (2015).

[27] L. Sun, R. X. Cao, B. F. Miao, Z. Feng, B. You, D. Wu, W.
Zhang, A. Hu, and H. F. Ding, Creating an Artificial Two-
Dimensional Skyrmion Crystal by Nanopatterning, Phys.
Rev. Lett. 110, 167201 (2013).

[28] M. V. Sapozhnikov and O. L. Ermolaeva, Two-dimensional
Skyrmion lattice in a nanopatterned magnetic film, Phys.
Rev. B 91, 024418 (2015).

[29] M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva,
N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Yu. V.
Petrov, Artificial dense lattice of magnetic bubbles, Appl.
Phys. Lett. 109, 042406 (2016).

PHYSICAL REVIEW LETTERS 120, 067201 (2018)

067201-5

https://doi.org/10.1016/0370-1573(86)90142-0
https://doi.org/10.1016/0370-1573(86)90142-0
https://doi.org/10.1038/ncomms1250
https://doi.org/10.1038/35082010
https://doi.org/10.1038/35082010
https://doi.org/10.1088/1367-2630/17/6/069501
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1088/1367-2630/18/6/065003
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.210
https://doi.org/10.1038/nnano.2013.210
https://doi.org/10.1038/srep06784
https://doi.org/10.1038/srep07643
https://doi.org/10.1038/srep07643
https://doi.org/10.1038/nmat4615
https://doi.org/10.1038/srep23164
https://doi.org/10.1038/srep23164
https://doi.org/10.1088/1367-2630/aa5b55
https://doi.org/10.1038/srep09400
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nmat2916
https://doi.org/10.1126/science.1234657
https://doi.org/10.1126/science.1234657
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1103/PhysRevLett.102.186601
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.106.156603
https://doi.org/10.1103/PhysRevLett.110.117202
https://doi.org/10.1103/PhysRevLett.110.117202
https://doi.org/10.1038/ncomms9462
https://doi.org/10.1103/PhysRevLett.110.167201
https://doi.org/10.1103/PhysRevLett.110.167201
https://doi.org/10.1103/PhysRevB.91.024418
https://doi.org/10.1103/PhysRevB.91.024418
https://doi.org/10.1063/1.4958300
https://doi.org/10.1063/1.4958300


[30] M. V. Sapozhnikov, Skyrmion lattice in a magnetic film with
spatially modulated material parameters, J. Magn. Magn.
Mater. 396, 338 (2015).

[31] M. Beg, R. Carey, W. Wang, D. Cortés-Ortuño, M. Vousden,
M.-A. Bisotti, M. Albert, D. Chernyshenko, O. Hovorka,
R. L. Stamps, and H. Fangohr, Ground state search,
hysteretic behaviour, and reversal mechanism of Skyrmionic
textures in confined helimagnetic nanostructures, Sci. Rep.
5, 17137 (2015).

[32] J. Mulkers, B. Van Waeyenberge, and M. V. Milošević,
Effects of spatially engineered Dzyaloshinskii-Moriya in-
teraction in ferromagnetic films, Phys. Rev. B 95, 144401
(2017).

[33] W. Jiang, P. Upadhyaya,W. Zhang, G. Yu,M. B. Jungfleisch,
F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O.
Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing
magnetic Skyrmion bubbles, Science 349, 283 (2015).

[34] G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid,
Room temperature Skyrmion ground state stabilized
through interlayer exchange coupling, Appl. Phys. Lett.
106, 242404 (2015).

[35] A. Kákay, E. Westphal, and R. Hertel, Speedup of FEM
micromagnetic simulations with graphical processing units,
IEEE Trans. Magn. 46, 2303 (2010).

[36] Y. S. Lin, P. J. Grundy, and E. A. Giess, Bubble domains in
magnetostatically coupled garnet films, Appl. Phys. Lett.
23, 485 (1973).

[37] T. Garel and S. Doniach, Phase transitions with spontaneous
modulation-the dipolarizing ferromagnet, Phys. Rev. B 26,
325 (1982).

[38] A. P. Malozemoff and J. C. Slonzewski, Magnetic Domain
Walls in Bubble Materials (Academic Press, New York,
1979).

[39] N. S. Kiselev, A. N. Bogdanov, R. Schäfer, and U. K.
Rößler, Chiral Skyrmions in thin magnetic films: new
objects for magnetic storage technologies?, J. Phys. D
44, 392001 (2011).

[40] Ar. Abanov and V. L. Pokrovsky, Skyrmion in a real
magnetic film, Phys. Rev. B 58, R8889 (1998).

[41] A. O. Leonov and M. Mostovoy, Multiply periodic states
and isolated Skyrmions in an anisotropic frustrated magnet,
Nat. Commun. 6, 8275 (2015).

[42] S.-Z. Lin and S. Hayami, Ginzburg-landau theory for
Skyrmions in inversion-symmetric magnets with competing
interactions, Phys. Rev. B 93, 064430 (2016).

[43] E. A. Stepanov, C. Dutreix, and M. I. Katsnelson, Dynami-
cal and Reversible Control of Topological Spin Textures,
Phys. Rev. Lett. 118, 157201 (2017).

[44] A. N. Bogdanov and D. A. Yablonskiı̆, Thermodynamically
stable “vortices”, in magnetically ordered crystals. The
mixed state of magnets, JETP, 68, 101 (1989).

[45] A. Bogdanov and A. Hubert, Thermodynamically stable
magnetic vortex states in magnetic crystals, J. Magn. Magn.
Mater. 138, 255 (1994).

[46] A. Bogdanov and A. Hubert, The stability of vortex-like
structures in uniaxial ferromagnets, J. Magn. Magn. Mater.
195, 182 (1999).

[47] A. N. Bogdanov and U. K. Rößler, Chiral Symmetry Break-
ing in Magnetic Thin Films and Multilayers, Phys. Rev.
Lett. 87, 037203 (2001).

[48] S. Komineas and N. Papanicolaou, Skyrmion dynamics in
chiral ferromagnets, Phys. Rev. B 92, 064412 (2015).
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