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We introduce a model of interacting Majorana fermions that describes a superconducting phase with a
topological order characterized by the Fibonacci topological field theory. Our theory, which is based on a
SOð7Þ1=ðG2Þ1 coset factorization, leads to a solvable one-dimensional model that is extended to two
dimensions using a network construction. In addition to providing a description of the Fibonacci phase
without parafermions, our theory predicts a closely related “anti-Fibonacci” phase, whose topological order
is characterized by the tricritical Ising model. We show that Majorana fermions can split into a pair of
Fibonacci anyons, and propose an interferometer that generalizes the Z2 Majorana interferometer and
directly probes the Fibonacci non-Abelian statistics.
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Current interest in topological quantum phases is height-
ened by the proposal to use them for quantum information
processing [1,2] and by prospects for realizing them in
experimentally viable electronic systems. There is growing
evidence that the fractional quantum Hall (QH) state at
filling ν ¼ 5=2 is a non-Abelian state [3–7] with Ising
topological order. A simpler form of Ising order is predicted
in topological superconductors (T-SC) [8,9] and in SC
proximity effect devices [10–14]. In these systems the Ising
σ particle is not dynamical, but is associated with domain
walls or vortices that host gapless Majorana fermion
modes. Recent experiments have found promising evidence
for Majorana fermions in 1D and 2D SC systems [15–17].
Ising topological order is insufficient for universal

quantum computation, but the richer Fibonacci topological
order is sufficient [18]. Fibonacci order arises in the Z3

parafermion state introduced by Read and Rezayi [19],
which is a candidate for the fractional QH state at
ν ¼ 12=5. Parafermions can also be realized by combining
SC with the fractional QH effect [20–24]. This line of
inquiry culminated in the tour de force works [25,26] that
showed a ν ¼ 2=3 QH state, appropriately proximitized,
could exhibit a Fibonacci phase.
In this Letter we introduce a different formulation of the

Fibonacci phase based on a model of interacting Majorana
fermions. Our starting point is a system of chiral Majorana
edge states, which can, in principle, be realized in SC
proximity effect structures. We show that a particular four
fermion interaction leads to an essentially exactly solvable
model that realizes the Fibonacci phase. In addition to
providing a direct route to the Fibonacci phase without
parafermions, our theory reveals a distinct but closely
related “anti-Fibonacci” state that is a kind of particle-hole
conjugate to the Fibonacci state with a topological order
that combines Ising and Fibonacci. Our formulation also
suggests a method for experimentally probing the

Fibonacci state. We introduce a generalization of the
interferometer introduced earlier for Majorana states
[27,28], and argue that it provides a method for unambig-
uously detecting Fibonacci order.
The fact that interacting Majorana fermions can exhibit a

Fibonacci phase is foreshadowed by Rahmani et al. [29]
(RZFA), who showed that a 1DMajorana chain with strong
interactions can be tuned to the tricritical Ising (TCI)
critical point. The same critical point arises in the 1D
“golden chain”model of coupled Fibonacci anyons [30], as
well as at interfaces connecting Ising and Fibonacci order
in the QH effect [31]. There is a sense in which the TCI
point of the RZFA model is like a Fibonacci chain, but it is
not clear how to extend it to two dimensions. Our theory
provides a method for accomplishing that.
Mong et al. [25] formulated the Fibonacci phase using a

“trench” construction that began with 1D strips of ν ¼ 2=3
QH states coupled along trenches in the presence of a SC. A
single trench mapped to the 3 state clock model, with a
critical point described by the Z3 parafermion conformal
field theory (CFT). The resulting 1D states were coupled to
create a gapped 2D phase. This is similar to the coupled
wire construction [32] for the Read Rezayi state introduced
in Ref. [33], but differs in an important way. That model
was based on the coset construction [34–36], which allows
a simple CFT (½SUð2Þ1�3 with central charge c ¼ 3) to be
factored into less trivial CFTs [SUð2Þ3 þ SUð2Þ31=SUð2Þ3
with c ¼ 9=5þ 6=5]. This exact factorization identifies a
solvable coupled wire Hamiltonian, where counterpropa-
gating modes of the two factors pair up differently,
resulting in a nontrivial unpaired chiral edge mode [33,37].
The construction in this paper is based on the coset

SOð7Þ1=ðG2Þ1 [38]. SOð7Þ1 describes 7 free chiral
Majorana modes with c ¼ 7=2. G2 is a Lie group that sits
inside SOð7Þ. ðG2Þ1, with c ¼ 14=5, is the Fibonacci CFT
[25,39]. The quotient is a CFT with
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c ¼ 7=2 − 14=5 ¼ 7=10; ð1Þ

which can be identified with the TCI model. Thus, the edge
states of a noninteracting T-SC with Chern number n ¼ 7
factor into a ðG2Þ1 Fibonacci (FIB) sector and a SOð7Þ1=
ðG2Þ1 TCI sector. In the following we will design an
interaction that separates the factors and leads to 2D
topological phases with either c ¼ 14=5 (Fibonacci) or c ¼
7=10 (anti-Fibonacci) edge states.
We begin with some facts aboutG2, which is well known

in mathematical physics [38,40]. G2 is the simplest excep-
tional Lie group. Its relation to SOð7Þ involves the
mathematics of the octonion division algebra [41]. An
octonion is specified by 8 real numbers: q ¼ q0þP

7
a¼1 qaea, where ea are 7 square roots of −1 that satisfy

the nonassociative multiplication rule

eaeb ¼ −δab þ Cabcec: ð2Þ

Cabc is a totally antisymmetric tensor. It is not unique, but
can be chosen to satisfy [41]

Caþ1bþ1cþ1 ¼ Cabc; C124 ¼ 1; ð3Þ

where the indices are defined mod 7. Equation (3) along
with antisymmetry specifies all the nonzero elements of
Cabc. ea define a set of 7 unit vectors that transform under
SOð7Þ. However, not all SOð7Þ rotations preserve Eq. (2).
G2 is the automorphism group of the octonions: the
subgroup of SOð7Þ that preserves Cabc.
The 21 generators of SOð7Þ can be represented by

7 × 7 skew symmetric matrices Tm;n of the form Tm;n
ab ¼

iðδmaδnb − δmbδnaÞ. There are 14 combinations that pre-
serve Cabc, which can be written [40]

MA ¼
8
<

:

TA;Aþ2−TAþ1;Aþ5ffiffi
2

p 1 ≤ A ≤ 7

TA;Aþ2þTAþ1;Aþ5−2TAþ3;Aþ4ffiffi
6

p 8 ≤ A ≤ 14:
ð4Þ

These matrices are normalized by Tr½MAMB� ¼ 2δAB and
represent the generators of G2 in the 7D fundamental
representation, analogous to the Pauli matrices of SUð2Þ. In
what follows, it will be useful to express the quadratic
Casimir operator as

X

A

MA
abM

A
cd ¼

2

3
ðδadδbc − δacδbdÞ −

1

3
� Cabcd; ð5Þ

where �Cabcd ¼ ϵabcdefgCefg=6 is the dual of Cabc whose
nonzero elements follow from �C3567 ¼ −1, as in Eq. (3).
We now consider the coset factorization of a 1D system

of 7 free chiral Majorana fermions described by

H0 ¼ −
iv
2

X7

a¼1

γa∂xγa: ð6Þ
We adopt a Hamiltonian formalism [42] with Majorana
operators satisfying fγaðxÞ; γbðx0Þg ¼ δðx − x0Þδab. H0

describes a SOð7Þ1 Wess Zumino Witten (WZW) model
with c ¼ 7=2. The coset construction allows this to be
written H0 ¼ HFIB þHTCI. The FIB sector is expressed in
terms of ðG2Þ1 currents in Sugawara form [36,43],

HFIB ¼
X

A

πvJAJA

kþ g
; JA ¼

X

ab

1

2
MA

abγaγb; ð7Þ

with k ¼ 1, g ¼ 4. Using Eq. (5), the operator product
gives

HFIB ¼ −
2iv
5

X

a

γa∂xγa −
πv
60

X

abcd

� Cabcdγaγbγcγd;

HTCI ¼ −
iv
10

X

a

γa∂xγa þ
πv
60

X

abcd

� Cabcdγaγbγcγd: ð8Þ

The correlator of Hα¼FIB;TCI is hHαðxÞHβðx0Þi ¼
v2δαβcα=8π2ðx − x0Þ4, with cFIB ¼ 14=5 and cTCI ¼ 7=10
[44]. This shows that H0 decouples into two independent
sectors, as depicted in Fig. 1(a).
HFIB describes a ðG2Þ1 WZW model, with two primary

fields 1, τ of dimension h ¼ 0, 2=5. τ transforms under the
7D representation of G2 and obeys the Fibonacci fusion
algebra τ × τ ¼ 1þ τ. HTCI describes the Mð5; 4Þ minimal
CFT with 6 primary fields 1, ϵ, ϵ0, ϵ00, σ, σ0, with h ¼ 0,
1=10, 3=5, 3=2, 3=80, 7=16 [36]. The Majorana fermion
operator γa factors into the product

γa ¼ τa × ϵ ð9Þ

FIB A-FIB

7/2
c=14/5  (FIB)

c=7/10  (TCI)
=

(a) (b)

(c) (d)

0 L

c=7/2

FIG. 1. (a) 7 chiral Majorana edge modes factor into FIB and
TCI sectors with c ¼ 14=5þ 7=10 ¼ 7=2. (b) A 1D nonchiral
system with interaction λ

P
AJ

A
RJ

A
L transmits the TCI sector, but

reflects the FIB sector. The bottom panels show network
constructions for the Fibonacci phase (c) and the anti-Fibonacci
phase (d).
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with h ¼ 2=5þ 1=10 ¼ 1=2. The 21 bilinears iγaγb
decompose into 14 JA’s, along with 7 operators τa × ϵ0

with h ¼ 2=5þ 3=5 ¼ 1. JA act only in the FIB sector:
½JA;HTCI� ¼ 0. The trilinear combination Cabcγaγbγc is ϵ00
with h ¼ 3=2 and acts only in the TCI sector.
We now introduce a 1D model of 7 nonchiral Majorana

fermions γaR=L with an interaction that gaps the FIB sector,
leaving the TCI sector gapless. Consider

H ¼ −
iv
2

X

a

ðγaR∂xγaR − γaL∂xγaLÞ þ λ
X

A

JARJ
A
L; ð10Þ

where JAR=L are given in Eq. (7). The λ term commutes with
HTCI, so it operates only in the FIB sector. A perturbative
renormalization group analysis gives dλ=dl ¼ −2λ2=πv,
so λ < 0 is marginally relevant. When λ flows to strong
coupling it is natural to expect that it leads to a gap
Δ ∝ e−πv=2jλj in the FIB sector and a gapless TCI critical
point. This is similar to the RZFA model, except the G2

symmetry locates the critical point exactly.
The exact factorization allows the two sectors to be

separated. Consider the 1D system in Fig. 1(b), with
λðxÞ ≠ 0 for 0 < x < L. Provided L ≫ ξ ¼ v=Δ, the gap
in the FIB sector leads to an exponential suppression of
transmission. The FIB sector will be perfectly reflected,
while the TCI sector will be perfectly transmitted.
Interestingly, this means an incident Majorana fermion
γa splits, with τa reflected and ϵ transmitted. This forms the
basis for the interferometer to be discussed below.
We wish to use Eq. (10) to construct a 2D gapped

topological phase. One approach is to adapt the coupled
wire model [32]. This requires coupling right movers of the
TCI sector on wire i to left movers of the TCI sector on wire
iþ 1. If this gaps the TCI sector, then we will have a 2D
gapped phase with TCI edge states. This is problematic,
however, because the simplest tunneling term that can be
built from local operators and does not couple to the gapped
FIB sector is the trilinear Cabcγaγbγc. The resulting
tunneling term uϵ00iRϵ

00
iþ1L, with dimension 3, is perturba-

tively irrelevant. This does not preclude the possibility of a
gapped phase for large u, but a nonperturbative analysis
would be necessary to establish it. Fortunately, however,
the exact factorization of the coset model allows for an
alternative network construction, inspired by the Chalker
Coddington model [45].
Figure 1(c) shows a network of n ¼ 7 T-SC islands in

which each island has 7 chiral Majorana modes. In the
absence of coupling the Majorana modes are localized on
each island, so the system is a trivial SC. If the islands are
strongly coupled by single particle tunneling they will
merge, and the system is a n ¼ 7 T-SC. In the absence of
interactions, the transition between these phases will have 7
gapless 2þ 1D Majorana modes. For strong interactions
intermediate topological phases can arise. We turn off the
single particle tunneling and couple the neighboring islands
with the interaction term in Eq. (10). Provided the contact

length L ≫ ξ, the excitations in the FIB sector will be
reflected from the contact, which means they are trans-
mitted to the next island. Excitations in the TCI sector,
however, are transmitted by the contact, so they remain
localized on the same island. From Fig. 1(c), it can be seen
that both the TCI and the FIB sectors are localized in the
interior of the network. The TCI states are localized on the
islands, while the FIB states are localized on the dual lattice
of voids between the islands. Since all bulk states are
localized in finite, lattice scale regions, there will be a bulk
excitation gap. The perimeter of the network, however has a
gapless FIB edge state with c ¼ 14=5. We emphasize that
though fine-tuning is required to achieve the exactly
solvable Hamiltonian (10), the tuning does not need to
be perfect. This gapped Fibonacci phase will be robust to
finite single particle tunneling and other interactions.
Figure 1(d) shows a similar network that is surrounded by a

n ¼ 7 chiralMajorana edge state. This leads to a distinct phase
that also has a bulk gap, but has TCI edge states with
c ¼ 7=10. This state can be viewed as a Fibonacci phase
sitting inside a n ¼ 7 T-SC, with c ¼ 7=2 − 14=5. We call
this the anti-Fibonacci in analogy with the “anti-Pfaffian”
[46,47], which is the Pfaffian sitting inside a ν ¼ 1 QH state.
The anti-Fibonacci has a topological order associated with the
TCI CFT. However, the 6 TCI quasiparticles can also be
understood as a combination of 1, τ Fibonacci quasiparticles
with the 1,ψ , σi Ising quasiparticles. TheTCI fusion rules [36]
of the quasiparticles identified in Table I are reproduced
by the simpler Fibonacci and Ising fusion rules (e.g.,
σi × σi ¼ 1þ ψ). Similar fusion rule decompositions have
been identified for other theories [31,39].As in theT-SC,σ and
σ0 are not dynamical quasiparticles, but theywill be associated
with h=2e vortices in the SC. Depending on the energetics, a
SC vortex in the anti-Fibonacci phasewill bind either a σ or σ0.
If it is σ, then the vortex binds a Fibonacci anyon. Likewise in
the Fibonacci phase, a vortex could bind 1 or τ [25].
The above considerations suggest a possible route

towards realizing the Fibonacci phase is to start with a
system close to a multicomponent T-SC-trivial SC tran-
sition. This could be achieved by introducing SC via the
proximity effect into a 2D electron gas in the vicinity of a
quantum Hall plateau transition with degenerate Landau
levels. Progress in this direction has recently been reported
in a quantum anomalous Hall insulator coupled to a SC,
where a plateau observed in the two terminal conductance
was attributed to T-SC [17]. Another promising venue is
graphene, which has a fourfold degenerate zeroth Landau

TABLE I. The 6 quasiparticles of the TCI model can be
identified with combinations of Ising and Fibonacci quasipar-
ticles.

1 ψ σi

1 1 ϵ00 σ0
τ ϵ0 ϵ σ

PHYSICAL REVIEW LETTERS 120, 066801 (2018)

066801-3



level. Coexistence of SC with the quantum Hall effect in
these systems appears feasible [48,49].
If the Fibonacci and/or the anti-Fibonacci T-SC can be

realized, then it will be important to develop experimental
protocols for probing them. One approach is to measure the
thermal Hall conductance, which directly probes the central
charge c of the edge states κxy ¼ cπ2Tk2B=3h. This has
proven to be a powerful method for identifying the
topological order of QH states [7,50,51], but it does not
directly probe the non-Abelian quasiparticle statistics. In
the QH effect, Fabry Perot [52–54], and Mach Zehnder
[55,56] interferometers have been proposed for this pur-
pose. Here we introduce a distinct interferometer that
generalizes the Majorana fermion interferometer [27,28].
Figure 2 shows a Hall bar with 4 Ohmic contacts (C1-4)

where the electron density is adjusted so that adjacent
regions have QH filling factors ν ¼ 1 and ν ¼ 4. The
middle is coupled to a SC that leads to a n ¼ 1 T-SC region
and a trivial n ¼ 8 SC region. We assume that at the
boundary between the n ¼ 1 and n ¼ 8 SCs there is an
island of either Fibonacci [Fig. 2(a)] or anti-Fibonacci
[Fig. 2(b)]. This leads to the pattern of edge states shown.
Suppose contact C1 is at voltage V1, and that the SC and

the other 3 contacts are grounded. We use a Landauer-
Büttiker formalism [57] to compute the current in C2, given
by I2 ¼ vFhψ†

inψ in − ψ†
outψouti, where ψ inðoutÞ describe the

ν ¼ 1 chiral fermions entering (leaving)C2. V1 only affects
ψ in, which in the SC decomposes into γ0 þ iγ01 [27,28].
Thus, I2 ∝ hiγ0γ01i. γ0 comes directly from C1, but γ01

comes from the region where τ and ϵ split and then
recombine. First suppose there are no quasiparticles on
the island. γ01 will be a linear combination

P
7
j¼1 t1jγj of the

incident Majorana modes, where tij is a real orthogonal
scattering matrix and γ2−7 are associated with the c ¼ 3
edge. Ignoring the contributions from the grounded contact
C3, iγ0γ01 ¼ t11iγ0γ1. This relates I2 to the current coming
out of C1, I2 ¼ t11ðe2=hÞV1.
Quasiparticles localized on the island will modify this

result. The transmitted particles will encounter a branch cut
due to non-Abelian statistics that can modify the state of the
localized quasiparticle. Provided the local Hamiltonian near
the edge is not modified by the presence of the extra
quasiparticle, this will be purely of topological origin. The
expectation value of the current will only be nonzero if the
localized quasiparticle returns to its original state. The
probability amplitude that anyon a returns to its original state
when circled by anyon b is given by the monodromy matrix
[54] Mab ¼ SabS11=Sa1Sb1, which depends on the topologi-
cal data in the modular S matrix Sab. We, therefore, predict

I2 ¼
e2

h
t11MabV1; ð11Þ

where a and b are labels for the transmitted and localized
quasiparticles. Provided quasiparticles can be introduced to
the island without modifying t11 (which depends on the local
Hamiltonian near the edges), the ratios of the conductances for
different localized quasiparticles will be universal (note
Ma1 ¼ 1). Other proposed interferometric measurements of
Fibonacci statistics have challenges similar to controlling t11
[39,54]. A possible (albeit more complicated) way to over-
come that is to include a contact inside the island that allows
quasiparticles to come and go, leading to telegraph noise [58].
For the FIB phase, where the transmitted quasiparticle is

τ, the universal ratio is determined by

MFIB
ττ ¼ −1=φ2; ð12Þ

where φ ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden mean. In the A-FIB
phase, the ratios are determined by MTCI

ϵb for
b ¼ 1; ϵ; ϵ0; ϵ00; σ; σ0. These can be evaluated from the 6 ×
6 TCI Smatrix [29]. However, the same results are obtained
by treating the A-FIB as the FIB sitting inside Ising. Then,
MTCI

ϵb ¼ MI
ψbi

MFIB
τbf

, where biðfÞ are the Ising (Fibonacci)

decomposition of particle b from Table I. The nontrivial
Ising term is MI

ψσi ¼ −1 (which is probed in the Majorana
interferometer). In the A-FIB state, if a vortex binds σ, the
extra quasiparticle can be controlled with a magnetic flux,
and MTCI

ϵσ ¼ þ1=φ2.
In this Letter we have introduced a theory of the

Fibonacci phase based on Majorana fermions near a
multicomponent topological critical point with strong
interactions. While this phase has the same topological
structure as the parafermion based Fibonacci states, our
theory clarifies the relation between the Fibonacci and ant-
Fibonacci phases and shows the way in which Majorana

 = 1  = 1

 = 4  = 4

c=1

c=3

c=1/2

c=
1/

2

c=
1/2

c=14/5

c=7/10
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c=3
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c=4 c=4

τc=7/2

τ
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 = 1  = 1

 = 4  = 4
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c=3
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2
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c=1

c=3

c=4 c=4

c=7/2

τ

ε

1

0

A-FIB σ

γ'1

'1

n=8 SC

n=1 T-SC

(b)

(a)

C4C3

C1 C2

C2

C4C3

C1

FIG. 2. A Fibonacci interferometer in a Hall bar with Ohmic
contacts C1-4 and SC in the shaded region. Dirac (Majorana)
edge states are indicated by solid (dashed) lines. The c ¼ 7=2
edge splits into FIB and TCI edges around the Fibonacci (a) or
anti-Fibonacci (b) island. A quasiparticle adds a branch cut
(dotted line) that modifies transmission from C1 to C2.
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fermions can fractionalize into Fibonacci anyons. It also
points to a promising direction in the broader problem of
searching for exotic topological phases in strongly inter-
acting systems with massless single-particle Dirac or
Majorana fermions.
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