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In this Letter we supervisedly train neural networks to distinguish different topological phases in the
context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with
chiral symmetry, the neural network can predict their topological winding numbers with nearly 100%
accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data.
These results show a remarkable success that the neural network can capture the global and nonlinear
topological features of quantum phases from local inputs. By opening up the neural network, we confirm
that the network does learn the discrete version of the winding number formula. We also make a couple of
remarks regarding the role of the symmetry and the opposite effect of regularization techniques when
applying machine learning to physical systems.
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Recently, machine learning has emerged as a novel tool
for studying physical systems and has demonstrated its
ability in problems such as inferring numerical solutions
[1–4], classifying phases [5–24], accelerating Monte Carlo
algorithms [25–30], detecting entanglement [31], and
controlling quantum dynamics [32–35]. Among all these
applications, learning phases is a particularly intriguing
one, as it paves a new route toward discovering new phases
or even new physics without prior human knowledge [36].
Indeed, there have already been quite a few works on this
direction of identifying phase transitions or even extracting
order parameters unsupervisedly, i.e., without the aware-
ness of any concept of phases [14–24].
Aside from the current success of machine learning

phases within Landau’s paradigm, topological phases are
especially challenging to learn for several reasons. First,
these phases are characterized by topological properties,
e.g., the topological invariants, which are intrinsically
nonlocal. Second, these topological invariants are nonlinear
with respect to the field configuration. Third, topological
invariants are intensive instead of extensive compared to
the conventional order parameters. As a result, many
commonly used techniques in machine learning turn out
to be ineffective. For example, the intensiveness makes it
futile to distinguish topological phases with the method of
(kernel) principal component analysis [22].
The neural network is nonetheless a promising tool for

learning topological phases due to its great expressibility
and versatility. Mathematically, these networks are able to
approximate any continuous functions if the number of
fitting parameters can grow indefinitely [37,38]. This great
expressibility, together with the development of many
effective training algorithms [39–43], makes the neural
network an indispensable ingredient in the boom of modern

machine learning [44]. In this Letter, we report that
properly designed neural networks can successfully learn
topological invariants for topological band insulators
[45–49]. Our formalism and results possess the following
key features that make them significantly beyond those in
the existing works on this topic: (i) The input data are
completely local; (ii) our study is not restricted to any
specific model in the symmetry class; (iii) our neural
network has generalization power after training. We will
elaborate these points in the following.
To be concrete, we consider one-dimensional topological

band insulators of the AIII symmetry class [47–49]. The
general form of such two-band Hamiltonians is
HðkÞ ¼ hðkÞ · σ, where σ ≡ ðσx; σy; σzÞ is the vector of
Pauli matrices. The chiral symmetry in AIII class requires
SHðkÞS−1 ¼ −HðkÞ. Without loss of generality, we can
always choose S ¼ σz so that only hx and hy are nonzero. In
our study, we feed neural networks directly with normal-
ized Hamiltonians ~HðkÞ≡ ~hxðkÞσx þ ~hyðkÞσy at L points
discretized uniformly along the Brillouin zone. Here
~hiðkÞ≡ hiðkÞ=jhðkÞj, i ¼ x, y. In other words, the input
data are ðLþ 1Þ × 2 matrices of the form

� ~hxð0Þ ~hxð2π=LÞ ~hxð4π=LÞ … ~hxð2πÞ
~hyð0Þ ~hyð2π=LÞ ~hyð4π=LÞ … ~hyð2πÞ

�T

: ð1Þ

In reality, these input data are available in quantum
simulators [50]. In the following, we choose L ¼ 32 and
confirm all our results are insensitive to L as long
as L ≥ 32.
The topological invariant for the AIII class is the winding

number, as the first homotopy group of a circle π1ðS1Þ. It is
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defined for a continuous mapping S1 → S1∶k ↦ UðkÞ,
k ∈ ½0; 2π�. jUðkÞj ¼ 1 and Uðkþ 2πÞ ¼ UðkÞ. For the
Hamiltonians given above, we identify UðkÞ ¼ ~hxðkÞþ
i ~hyðkÞ. Intuitively, the winding numberw ∈ Z is an integer
that counts how many times UðkÞ winds around the origin
when k changes from 0 to 2π. Its sign denotes the clockwise
(w < 0) or the anticlockwise (w > 0) winding. The wind-
ing number could be formally computed as

w ¼ −
i
2π

I
2π

0

U�ðkÞ∂kUðkÞdk: ð2Þ

For discretized UðkÞ, this reduces to

w ¼ −
1

2π

XL
n¼1

ΔθðnÞ; ð3Þ

where ΔθðnÞ≡ ½θðnÞ − θðn − 1Þ� mod 2π so that
ΔθðnÞ ∈ ½−π; πÞ and θðnÞ≡ arg½Uð2πn=LÞ�.
Our machine learning workflow is shown schematically

in Fig. 1. The output of the neural network is a real number
~w, and the predicted winding number is interpreted as the
integer that is closest to ~w. Notice that the input data of form
Eq. (1) is completely local and highly nonlinear with
respect to the formula Eq. (3). We first train neural
networks with both Hamiltonians and their corresponding
winding numbers. At the testing stage, we feed only the
Hamiltonians to the neural networks and compare their
predictions with the winding numbers computed by Eq. (3),
from which we determine the percentage of the correct
predictions as accuracy. The details of the networks and the
training can be found in the Supplemental Material [51].

The Su-Schrieffer-Heeger (SSH) model [52] is one of the
most simple and widely studied models within the AIII
symmetry class, whose Hamiltonian is

HSSHðkÞ ¼ ðtþ t0 cos kÞσx þ ðt0 sin kÞσy: ð4Þ

This model hosts two topologically distinct gapped phases
with winding number w ¼ 0 for t > t0 and w ¼ 1 for t < t0,
respectively. We first report the results when the training
data are restricted within this model.
The training set consists of 105 SSHHamiltonians whose

ðt − t0Þ=t are uniformly distributed within ½−10; 10�, and
the test set consists of 104 similar Hamiltonians that are not
included in the training set. Surprisingly, even the most
simple neural network with no hidden layer nor nonlinear
activation function—essentially a linear model used for
linear regression—can correctly compute the winding
number with nearly 100% accuracy in the test set after
only one training epoch. Further increasing the network
complexity by introducing a hidden layer will push the
accuracy to exactly 100%. However, if we test these
networks with more general Hamiltonians of winding
number w ¼ 0, 1, the accuracy sharply drops to around
50%, which is just the accuracy of blind guesses. This
situation could not be improved by increasing model
complexity or using more sophisticated neural networks.
Obviously, these networks compute the winding number

with a shortcut that is dedicated to SSH Hamiltonians and is
only linear with respect to the input data. In fact, due to the
additional inversion symmetry in the SSH model
HSSHðkÞ ¼ σxHSSHð−kÞσx, one can read out the winding
number directly from the Hamiltonian at the high symmetry
point k ¼ π:

w ¼ 0 ↔ ~hðπÞ ¼ ð1; 0Þ;
w ¼ 1 ↔ ~hðπÞ ¼ ð−1; 0Þ: ð5Þ

This local feature is exactly what the networks exploited,
for they can predict the winding number perfectly even for
L ¼ 2, where only h0ð0Þ and h0ðπÞ are present.
The lesson is that, if the training data are restricted to

some certain model, the neural network would only exploit
less universal features of this specific model instead of the
universal ones. In the above example, the neural networks
do not learn the general formula Eq. (3), but “cleverly”
reduce Eq. (3) to Eq. (5). Therefore, they fail to make any
correct prediction for Hamiltonians not respecting the
inversion symmetry.
To examine whether the neural networks have the ability

to learn the winding number in its most general form,
we generate training data with the most general
one-dimensional Hamiltonians with chiral symmetry,

HðkÞ ¼ hxðkÞσx þ hyðkÞσy; ð6Þ

Input

Output

Conv.

Input Output

Fully-connected

Conv.

Neural
Network

FIG. 1. Schematic of the machine learning workflow and the
structure of the convolutional neural network. The input Ham-
iltonians are represented by vectors ~hðkÞ≡ ( ~hxðkÞ; ~hyðkÞ), where
k ∈ ½0; 2π� is in the Brillouin zone.
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where hiðkÞ, i ¼ x, y are periodic functions in k expanded
by the Fourier series

hiðkÞ ¼
Xc
n¼0

½ai;n cosðnkÞ þ bi;n sinðnkÞ�: ð7Þ

c is a cutoff that determines the highest possible winding
number of the Hamiltonian, and is set to c ¼ 4 in
the following. ai;n, bi;n are randomly sampled from a
uniform distribution within ½−1; 1�. Among 105 training
Hamiltonians, 37%, 50%, and 13% of them having winding
numbers w ¼ 0,�1, and�2, respectively. Different cutoff c
and the distribution of w of the training data will not affect
the network performance (See Supplemental Material [51]).
We consider two classes of neural networks: the fully

connected network and the convolutional network [53]. The
fully connected network has three hidden layers with 40, 32,
and 2 neurons, respectively. The total number of trainable
parameters is 4061. The convolutional network has two
convolutional layers with 40 kernels of size 2 × 2 and 1
kernel of size 1 × 1, followed by a fully connected layer of 2
neurons before the output layer. The total number of train-
able parameters is 310. The structure of the convolutional
network is shown in Fig. 1. All the hidden layers have
rectified linear units fðxÞ ¼ maxf0; xg as activation func-
tions and the output layer has linear activation fðxÞ ¼ x.
We test these networks with four different test sets,

schematically shown in Fig. 2. (i) 104 Hamiltonians with
winding numbers w ∈ f�2;�1; 0g that are not included in
the training set. (ii) 104 Hamiltonians with the following
functional form:

hxðkÞ ¼ θðπ − kÞ cos f1ðkÞ
þ θðk − πÞ cos½−f2ðk − πÞ þ f1ðπÞ�;

hyðkÞ ¼ θðπ − kÞ sin f1ðkÞ
þ θðk − πÞ sin½−f2ðk − πÞ þ f1ðπÞ�; ð8Þ

where θðxÞ is the Heaviside step function, f1ðkÞ and f2ðkÞ
are monotonic increasing functions bounded by
f1ð0Þ ¼ f2ð0Þ ¼ 0, and f1ðπÞ ¼ f2ðπÞ ≤ cπ. Intuitively,
the Hamiltonian first winds the circle anticlockwisely
during k ∈ ½0; π�, then clockwisely winds back during
k ∈ ½π; 2π�. The resulting winding numbers should always
be zero. (iii) 104 Hamiltonians with winding numbers
w ¼ �3. (iv) 104 Hamiltonians with winding num-
bers w ¼ �4.
The test results are presented in Table I. The convolu-

tional network works generally better than the fully
connected network. The Hamiltonian configurations in test
(ii) have a strong local twist at k ¼ π, but the global
topological numbers are always zero. That both neural
networks perform well in this test is an indication that they
have learned the global structures in the data instead of the
local features. Surprisingly, the convolutional network can
perform extremely well even in tests (iii) and (iv), which
consist of Hamiltonians with larger winding numbers not
seen by neural networks during the training. The fact that
the convolutional network can pass test (iii) and (iv) shows
that it has generalization power, and is also a strong
indication that it really learns the general formula for the
winding number.
Open the black box.—Inspired by its performance, we

open up the black box of the convolutional network and
explore what it learns. Mathematically, our convolutional
network can be described by the composition of the
following functions:
(i) The first layer performs N ¼ 40 different convolu-

tions with respect to the input Hamiltonians using the 2 × 2

kernel Ai, i ¼ 1;…; N:

~BiðnÞ ¼ Ai
11
~hx(2πðn − 1Þ=L)þ Ai

12
~hy(2πðn − 1Þ=L)

þ Ai
21
~hxð2πn=LÞ þ Ai

22
~hyð2πn=LÞ þ Ai

0; ð9Þ

for n ¼ 1;…; L, followed by BiðnÞ ¼ f( ~BiðnÞ), where

fðxÞ is the activation function.
(ii) The second layer performs another linear mapping

across different kernels and is diagonal in n, i.e.,

~DðnÞ ¼
XN
i¼1

ciBiðnÞ þ c0; ð10Þ

followed by DðnÞ ¼ f( ~DðnÞ).

(i) (ii)

(iii) (iv)

FIG. 2. Typical Hamiltonians arranged in the Brillouin zone in
the test set (i)–(iv). Here L ¼ 16.

TABLE I. Performance (accuracy with respect to different test
sets) of neural networks for learning topological phases in general
models.

Network Test (i) Test (ii) Test (iii) Test (iv)

Fully connected 82.2% 99.1% 22.8% 1.4%
Convolutional 99.6% 100.0% 98.2% 99.3%
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(iii) Finally, the L-dimensional vectorDðnÞ is mapped to
the winding number ~w through

~Fη ¼
XL
n¼1

MηnDðnÞ þ Nη; η ¼ 1; 2; ð11Þ

Fη ¼ fð ~FηÞ; ð12Þ

~w ¼
X2
η¼1

PηFη þQ: ð13Þ

All above, Ai, ci, Mηn, Nη, Pη, and Q are fitting
parameters that are determined during the training. If the
neural network successfully learns the discrete version of
the winding number formula Eq. (3), we should expect
DðnÞ reproduces ΔθðnÞ and then the rest of the layers are
basically summing over all ΔθðnÞ. To verify this, we
consider the input Hamiltonian

�
cosϕ cosðϕþ ΔϕÞ …

sinϕ sinðϕþ ΔϕÞ …

�T

; ð14Þ

and expect

Dðn ¼ 1Þ ∝ −
1

2π

�Δϕ; 0 ≤ ϕ < π;

Δϕ − 2π; π < ϕ ≤ 2π:
ð15Þ

In Fig. 3 we showDðn ¼ 1Þ as a function of ϕ andΔϕ. It
is very clear that, except for little fluctuations, Dðn ¼ 1Þ is
independent of ϕ and depends on Δϕ with the same
function form as Eq. (15).
With the above analysis, we can gain some under-

standing why our neural network has great generalization
power. The convolutional layers that extract local windings
are universal, and are unaffected by the global winding
numbers of the data. As long as the training Hamiltonians
are enough to cover the full surface of Fig. 3, the convolu-
tional layers are always interpolating Eq. (15) instead of
extrapolating it, however large the global winding numbers
are. Extrapolation only happens in the last two layers when
Δθ is summed. This is only a linear extrapolation, and is

relatively easy for neural networks. In this way, the trained
convolutional network computes winding numbers through
the discrete version of the winding number formula Eq. (3).
Regularization techniques.—Finally, we remark on the

regularization technique, which is usually considered
necessary in training neural networks in order to avoid
overfitting and to enhance networks’ generalization power
[40,42,53]. However, in our case we find the result to be
contrary. In Fig. 4, the ability of the network to compute
larger winding numbers decays rapidly with the L2 regu-
larization strength, although the network could still very
accurately compute winding numbers that are within the
same range as the training set [54]. We attribute this
phenomenon to the lack of noise. The data used here are
generated by randomly sampling Hamiltonians [55], where
there is much less noise, if noise exists at all. However,
imagine the training data are taken directly from experi-
ments. In this scenario the noise should exist and regu-
larization should be useful. Indeed, this is demonstrated to
be true in Fig. 4 if we artificially introduce noise into the
training data. The situation is similar when data are
generated by Monte Carlo sampling [5–7,13–15,17–24],
where thermal noise may exist and regularization will be
useful [56].
Concluding remarks.—In summary, we successfully

train a neural network that learns global and nonlinear
topological features from a large data set of Hamiltonians in
the momentum space. We illustrate that our neural network
has great generalization power to correctly compute larger
winding numbers not seen in the training data. By analyz-
ing the neural network, we confirm that our network does
learn the discrete version of the winding number formula.
Our network can directly be used to analyze the data from
quantum simulators [50]. It is also possible to generalize
our results to the topological model in higher dimension
and other classes [57]. We hope this work opens up a lot of
possibilities of using machine learning to study rich
topological physics.

FIG. 3. Dðn ¼ 1Þ as a function of ϕ and Δϕ when the input is
Eq. (14).

FIG. 4. The performance of the convolutional network on
various test sets with respect to the L2 regularization strength.
Solid lines, without introducing noise; inset dashed lines,
randomly adding �1 to the label of the winding number ω for
4% of the training data to mimic noise.
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Before concluding, we would like to make a couple of
remarks on the role of symmetry when applying machine
learning to physical problems. First, the symmetry of the
training data matters. In order for neural networks to learn
general rules, the training data have to be as general as
possible to avoid unnecessary symmetry constraints. As
demonstrated by the counterexample of learning the SSH
model, the neural network exploits the inversion symmetry
and learns a shortcut to the winding number. Second, the
symmetry of the neural network matters. The structure of
the neural network should be designed to be compatible
with the symmetry of the targeting physics law. It is
tempting to ask why the convolutional network performs
better than the fully connected network, as shown in
Table I, even though the later has more trainable parameters
and hence greater expressibility in principle. This is
because the translation of Hamiltonian configurations in
the momentum space does not change the winding number.
In practice, the translational symmetry is hard to be
rediscovered for the fully connected network during train-
ing. The convolutional network, on the other hand, respects
this symmetry explicitly, reducing the redundancy in the
parametrization. Thus, it is easier for the training algorithm
to find the optimal fitting parameters. Furthermore, the
winding number formula is the summation of many local
phase winding Δθ. The convolutional layer takes this
notion of locality directly through the 2 × 2 kernels. As
a result, the convolutional network performs better than the
fully connected network.
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