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Large size effects are experimentally measured in lattices of triangular unit cells: about a factor of 36 in
torsion rigidity and 29 in bending rigidity. This nonclassical phenomenon is consistent with Cosserat
elasticity, which allows for the rotation of points and distributed moments in addition to the translation of
points and force stress of classical elasticity. The Cosserat characteristic length for torsion is lt ¼ 9.4 mm;
for bending, it is lb ¼ 8.8 mm; these values are comparable to the cell size. Nonclassical effects are much
stronger than in stretch-dominated lattices with uniform straight ribs. The lattice structure provides a path to
the attainment of arbitrarily large effects.
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Continuum theories of elasticity are widely used for
representing materials with microstructure, including com-
posites and lattice “metamaterials,” as continuous media.
The currently accepted classical theory permits the Poisson
ratio in isotropic materials to range from −1 to 1=2 and
incorporates two independent elastic constants. A theory
with less freedom was tried: The uniconstant theory of
elasticity, developed by Navier [1], incorporates only one
elastic constant, a modulus, and was based on an
assumption that forces acted along the lines joining pairs
of atoms and were proportional to changes in the distance
between them. Navier’s theory predicted a Poisson ratio of
1=4 for all isotropic materials and was abandoned when
experiments demonstrated a range of Poisson ratios, so the
current classical theory was adopted. The Cosserat theory
[2] (with inertia terms called micropolar [3]) has more
freedom than classical elasticity; it incorporates a local
rotation of points and a couple stress (torque per unit area)
as well as the translation of points and force stress of
classical elasticity. The Cosserat theory of elasticity has six
independent isotropic elastic constants and even more
constants if the material is anisotropic. In contrast to
classical elasticity, Cosserat elasticity incorporates a char-
acteristic length scale in the continuum; the solid becomes
sensitive to strain gradients, and, hence, has a nonlocal
aspect, and can support an asymmetric stress.
Classical elasticity is entirely adequate for macroscopic

specimens in which the structure size is many orders of
magnitude smaller than the experimental size scale; macro-
scopic scale tests for Cosserat effects in aluminum reve-
aled classical behavior [4]. Nonclassical elastic effects are
expected if the ratio of structural to experimental length scale
is non-negligible. At the atomic scale, noncentral forces are
associated with moments such as those between dipoles;
these moments can be subsumed in a Cosserat analysis. The
dispersion of waves of a length a small multiple of the lattice
spacing was used to infer Cosserat behavior in diamond

crystals [5]; the inferred characteristic length was about
0.2 nm. More recently, classical elasticity [6] was predicted
to break down in crystalline materials in the length scale
range of 1–10 nm. In chiral cholesteric elastomers [7], the
characteristic length was predicted to be on the order of
10 nm. These length scales are on the order of the structure
size. Cosserat-type freedom is not limited to elasticity; it can
occur in other physical properties. Piezoelectricmaterials are
known to exhibit nonclassical sensitivity to gradients [8],
interpreted via a nonlocal concept [9]. The characteristic
length, governed by the spacing of ions in the lattice, is
enhanced in ferroelectrics, so that effects were observed in
layers several micrometers thick. Such materials in recent
studies have been called flexoelectric [10].
A larger characteristic length is to be expected in

materials with larger structural length scales. This is not
a sufficient condition; the specific nature of the structure is
pertinent as well. The Cosserat couple stress arises from the
superposition of bending and twisting moments transmitted
by the structural elements in materials. The Cosserat local
rotation corresponds to the rotation of the structural
elements. Forces and moments are also considered in the
classical analyses of foam [11] in which classical elastic
moduli were determined; effects of rotation gradients were
not considered. Lattices with straight elastic ribs were
analyzed via theoretical homogenization [12–14] as
Cosserat solids. Such lattices, despite their structure, are
nearly classical; the Cosserat characteristic lengths are
much smaller than their cell sizes. The reason is that these
structures are stretch dominated: The effects of rib exten-
sion greatly exceed the effects of rib bending and torsion.
Rib extension in such structures governs the force stress
and, hence, the classical elastic moduli; rib bending and
torsion transmits moments corresponding to the Cosserat
couple stress. The distributed Cosserat moments are mini-
mal in comparison with the forces, so the characteristic
length is small compared with the cell size in such lattices.
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A composite containing round aluminum beads in an
epoxy matrix was tested experimentally for Cosserat effects
and was found to be classical [15]. Indeed, composites
containing stiff spheres were shown by a homogenization
analysis to have characteristic lengths of zero [16]. A dense
closed cell polymer foam exhibited Cosserat effects; the
characteristic length was comparable to the cell size (the
largest cells had a diameter of 0.15mm), but size effects (see
below) were only about a factor of 1.3 as a result of weak
coupling [17]. Rotational waves of the sort anticipated in
Cosserat elasticity were observed in a noncohesive granular
assembly ofmetal spheres [18]. Avalue of κ (defined below)
was inferred, but characteristic lengths were not obtained;
indeed, the granular assemblywas predicted to have rotation
gradient sensitivity terms α, β, and γ equal to zero and,
hence, zero characteristic length; as with composites with
hard spheres, this is a degenerate case.
Lattices of the type presented in this Letter exhibit strong

nonclassical effects consistent with Cosserat elasticity; the
design provides a path to achieving arbitrarily large
Cosserat effects.
In Cosserat elasticity, the stress σjk can be asymmetric.

The resulting moment is balanced by a couple stress, mjk.
The antisymmetric part of the stress is related to local
rotations: σantisymjk ¼ κejkmðrm − ϕmÞ, in which κ is an elastic
constant, ϕm is the rotation of points, called a microrotation,
ejkm is the permutation symbol, and rk ¼ 1

2
eklmum;l is the

macrorotation based on the antisymmetric part of gradient of
displacement ui. The constitutive equations for linear
isotropic Cosserat elasticity [3] are as follows:

σij ¼ 2Gϵij þ λϵkkδij þ κeijkðrk − ϕkÞ; ð1Þ
mij ¼ αϕk;kδij þ βϕi;j þ γϕj;i: ð2Þ

There are six independent elastic constants for an
isotropic Cosserat solid. Constants λ and G have the same
meaning as in classical elasticity; α, β, and γ provide
sensitivity to rotation gradients, and κ quantifies the
coupling between fields. Technical constants derived from
these elastic constants are beneficial for physical insight
and are as follows: Young’s modulus E ¼ ½Gð3λþ 2GÞ=
ðλþ GÞ�, shear modulus G, Poisson ratio ν¼½λ=2ðλþGÞ�,
characteristic length, torsion lt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðβ þ γÞ=ð2GÞ�p
, char-

acteristic length, bending lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½γ=ð4GÞ�p

, coupling num-
ber N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½κ=ð2Gþ κÞ�p

, and polar ratio Ψ ¼ ½ðβ þ γÞ=
ðαþ β þ γÞ�. This is a generalization of the extraction of
technical constants from tensorial ones in classical
elasticity.
There are several key consequences of Cosserat elasticity

which differ from classical predictions. Circular holes
exhibit a lower stress concentration factor than expected
classically, and small holes exhibit less stress concentration
than larger ones [19]. A characteristic of Cosserat elasticity
pertinent to the research presented in this Letter is the

prediction of a size effect in the torsion [15] and bending
[20] of circular cylinders of Cosserat elastic materials.
These size effects manifest as slender cylinders appearing
stiffer than predicted classically. The lattices considered in
this Letter were developed to achieve strong Cosserat
effects by decoupling the rib rigidity in torsion and bending
from its rigidity in extension. This maximizes sensitivity to
the rotation gradient. These lattices were embodied via
selective laser sintering, an additive manufacturing tech-
nique. The lattice was modeled in SolidWorks and was
converted to stereolithography (STL) format for export
to 3D printing. Specimens were printed by a 3D Systems
sPro 60 HD-HS printer. The parent material was a poly-
amide polymer equivalent to nylon 12. Each rib element
(Fig. 1) consists of square section tubular segments with a
portion that approximates a Sarrus linkage. The ideal
Sarrus linkage contains hinged elements and offers zero
resistance to axial compression but resists torsion. The
measured effective Young’s modulus in bending of one rib
element was 281MPa; in compression, it was 14MPa; for a
solid rod, these moduli would be equal. The torsional
modulus was 387 MPa. The ribs, though not hinged,
therefore resist torsion and bending to a much greater
extent than compression. This rib design was created to be
sensitive to gradients and thus demonstrate large size
effects when used to construct 3D structures. Each rib
connects with its neighbors via hexagonal nodes shown in
Fig. 2. The lattice comprised of these ribs consists of
triangular prism unit cells of which the side length of the
triangular bases was 10.5 mm and the height was 9.0 mm.
The lattice density was 0.16 g=cm3.

FIG. 1. 3D printed rib structure vs idealized drawing. Scale bar,
5 mm.

FIG. 2. Cross section and side view of 3D printed lattice
structure. Scale bar, 10 mm.
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Cosserat effects were probed by measuring the size
dependence of rigidity at a constant frequency. This
protocol provides sensitivity to spatial gradients; it is
insensitive to time derivatives, because all the experiments
were done at the same frequency. By contrast, in wave
methods, a change in the wavelength is accompanied by a
change in the frequency. Therefore, wave dispersion due to
viscoelastic damping cannot be distinguished from
dispersion due to the sensitivity to spatial gradients. Five
structures of increasing size, but the same aspect ratio, were
printed. Specimens had complete cells with no partial cells;
this was done by making cross section shapes aligned with
the symmetry axes. All sections were hexagonal except the
smallest, which was triangular. Equivalent circles were
inscribed for interpretation. The specimens, from smallest
to largest, were composed of the following number of unit
cells in cross section by height: 1 × 3, 6 × 7, 24 × 13,
54 × 19, and 96 × 26.
These specimens were tested for torsional and bending

rigidities using a broadband viscoelastic spectrometer
(BVS) [21]. This apparatus uses a pair of Helmholtz coils
to apply a torque of controllable direction to the specimen
via a magnet attached to the base via a ceramic stalk and
cement. Themagnet was calibrated in the BVS using a lock-
in amplifier. Amirrorwas glued to the specimen’s base edge.
Tomeasure displacement, the beamof a semiconductor laser
was reflected off this mirror and directed to a silicon light
detector. The light detector was calibrated by moving it a
known distance, via the calibration stage, and measuring the
output voltage. A calibration curve was generated, and the
change in output voltage per change in position was used as
the beam position calibration constant (V=μm).
A sinusoidal signal with a frequency of 1 Hz was input to

the torsionHelmholtz coil. The same frequencywas used for
all specimen sizes to decouple viscoelastic effects from the
size effects being probed. The resulting torque vs angular
displacement signalswere displayed as a Lissajous figure on
an oscilloscope; the modulus and viscoelastic damping of
the structures were then calculated. To measure bending
moduli, the orthogonal bending Helmholtz coil was used,
and the light detector was switched to measure vertical
displacement. The calibration constant for the light detector
was determined as before, and the magnet’s calibration
constant for bending was used in calculations.
Compression tests were conducted using a screw-driven

test frame to ascertain the Young’s modulus of the
specimens in the absence of macroscopic gradients of
strain or rotation as well as to measure the Poisson ratio.
Anisotropy of the modulus was probed via propagation in
different directions of acoustic waves of a wavelength
much larger than the cell size.
Size effects in torsion were interpreted using the follow-

ing exact solution for a Cosserat elastic circular rod of
radius r with Ω as the ratio of structural rigidity to its
classical counterpart [15]:

Ω ¼ (1þ 6

�
lt

r

�
2

)

�
1 − 4

3
Ψχ

1 −Ψχ

�
; ð3Þ

in which χ ¼ I1ðprÞ=prI0ðprÞ, p2 ¼ 2κ=ðαþ β þ γÞ, and
I0 and I1 are modified Bessel functions of the first kind.
Classical torsional rigidity is ðM=θÞ ¼ G½ðπ=2Þr4�.G is the
true shear modulus in the absence of gradients, M is the
applied moment, and θ is the angular displacement per
length.
The shear modulus G, characteristic length of torsion lt,

and the coupling number N were found by fitting Eq. (3) to
the full set of experimental data using MATLAB. Ψ was
determined from the behavior of the data near the origin.
For bending, the classical rigidity is ðM=θÞ ¼

E½ðπ=4Þr4�. The exact expression of the rigidity ratio for
the bending of a Cosserat elastic circular rod of radius r is

Ω ¼ 1þ 8

�
lb

r

�
2

�
1 −

�
β
γ

�
2
�

ð1þ νÞ

þ 8N2

ð1þ νÞ
� �

β
γ þ ν

�
2

ζðδrÞ þ 8N2ð1 − νÞ
�
; ð4Þ

in which δ ¼ N=lb and ζðδrÞ ¼ ðδrÞ2(fðδrÞI0½ðδrÞ�−
I1½ðδrÞ�g=½ðδrÞI0ðδrÞ − 2I1ðδrÞ�). The Young’s modulus
E and Poisson ratio ν were determined from compression
testing, while lb, β=γ, and N were determined from fitting
the full set of experimental data with Eq. (4).
Results for torsion size effect studies are shown in Fig. 3.

Viscoelastic dispersion of the modulus cannot obtrude in
the interpretation, because all the experiments were con-
ducted at 1 Hz.

FIG. 3. Size effects for lattice specimens in torsion. Points are
experimental. The black curve is theoretical for best fit
G ¼ 1.1 MPa, lt ¼ 9.4 mm, N ¼ 1, and Ψ ¼ 1.0. Blue and
cyan curves illustrate theoretical predictions for lt ¼ 5.0 and
14 mm, respectively. Classical elasticity (lt ¼ 0) predicts con-
stant Ω ¼ 1 independent of the diameter, which is indicated by
the green horizontal dashed line.
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For torsion, G¼1.1MPa, lt ¼ 9.4 mm, and N ¼ 0.999.
Error bars shown were calculated from noise in the signal
and from uncertainties in specimen dimensions. The mean
absolute percent deviation between experimental results
and the Cosserat prediction was 12%, while the root-mean-
square deviation (RMSD) was 0.50. The increase in relative
stiffness did not roll off near the origin; therefore, Ψ < 1.5.
Results are consistent with Ψ ¼ 1 but are not very sensitive
toΨ in this regime. The maximum size effect in torsion was
Ω ¼ 36, corresponding to a 3500% deviation from the
classical prediction. The asymptotic value of G was located
via a curve fit. The characteristic length is comparable to
the structure cell size.
The results of bending size effect studies are shown in

Fig. 4, in which E ¼ 3.14 MPa, ν ¼ 0.05, lb ¼ 9.1 mm,
β=γ ¼ 0.5, and N ¼ 0.99. The mean absolute percent
deviation between the experimental results and Cosserat
prediction was 14%, while the RMSD was 0.58. The
asymptotic value for E is based on the average compression
modulus corrected for the difference in the frequency (0.04 vs
1 Hz) via dispersion inferred from observed damping tan
δ ≈ 0.05. In compression, there is no strain gradient. Similarly,
the Poisson ratio is the average based on compression. The
maximum size effect in bending was Ω ¼ 29.4, correspond-
ing to a 2843% deviation from the classical prediction.
It is concluded that the response follows Cosserat

elasticity and not classical elasticity and that the
Cosserat characteristic length is comparable to the cell
size. Size effects are large in magnitude.
Pulsed acoustic wave measurements at 60° intervals in

the transverse plane and in the longitudinal direction
revealed the lattice material to exhibit elastic transverse
isotropy. The longitudinal modulus was lower than the
transverse by a factor of 1.3; the lattice does not deviate

much from isotropy. No analytical solutions for Cosserat
elasticity are available for anisotropic rods. Therefore, the
isotropic solutions discussed above were used for an
interpretation, and the elastic constants were interpreted
as technical constants. This is analogous to materials
testing in classical elasticity, in which it is not always
practical to incorporate a full anisotropic interpretation.
Anisotropy is not a confounding variable, because size
effects do not occur in classical elasticity even in the
anisotropic case [22]. If need be, one may titrate the
geometry of the structure to achieve elastic isotropy as
has been done for negative Poisson ratio metal foams.
A wave cutoff frequency effect above 3 kHz was

observed, but its interpretation is equivocal. A cutoff of
waves can arise from structural resonance, from viscoelas-
tic damping, or from both. In the present lattice, the
wavelength at 3 kHz is about 5 times the cell size.
Because the cells have a complex structure, such a wave-
length may suffice for resonance. Attenuation based on a
calculation from viscoelastic damping also suffices to
significantly damp the waves above 3 kHz. Also, viscoe-
lasticity contributes to wave dispersion, which in non-
dissipative solids could be used to infer Cosserat effects.
So, for the present polymer lattice materials, the constant
frequency size effect approach used here provides an
unambiguous interpretation, in contrast to wave methods.
Periodic crystal lattices of atoms [23] with minimal
attenuation, by contrast, are amenable to wave methods.
As for further comparisons, in 2D chiral honeycomb

lattices analyzed as Cosserat continua, the Cosserat char-
acteristic lengths are similar to the cell size [24], and the
Cosserat coupling number N approaches its upper limit of
1. Experiments on low-density open cell polymer foams
disclose substantial size effects Ω up to a factor of 6.5 [25]
and up to a factor of 12 [26] in negative Poisson ratio foam
[27]. The characteristic length exceeded the cell size in both
foams, but foams were much more compliant (E ¼ 91 kPa
for normal foam and 25 kPa for negative Poisson ratio
foam) than the present lattices (3.14 MPa).
In contrast to foams, the present lattice structure provides

a path to the attainment of arbitrarily large effects: The
Sarrus-type rib segments can be made more slender, in view
of future improvements in 3D printing. Bend-dominated
behavior appears to be a necessary but not sufficient
condition for strong Cosserat effects in cellular solids such
as lattices and foams. Bend-dominated behavior refers to
rib deformation that occurs primarily in bending rather
than compression or axial stretch. By contrast, stretch-
dominated lattice structures with straight uniform ribs are
predicted to exhibit very weak Cosserat effects [12–14].
Other lattice “metamaterials” for high strength [28] made
by 3D printing [29] have been treated as classically elastic
in the absence of gradients but can be expected to exhibit
Cosserat freedom, similarly lattice “metamaterials” with a
controllable Hall coefficient [30].

FIG. 4. Size effects for lattice specimens in bending. Points
are experimental. The black curve is theoretical for best fit
E ¼ 3.14 MPa, ν ¼ 0.05, lb ¼ 8.8 mm, β=γ ¼ 0.5, and
N ¼ 0.99. Blue and cyan curves illustrate theoretical predictions
for lb ¼ 4.8 and 13 mm, respectively. Classical elasticity predicts
constant Ω ¼ 1 independent of the diameter, which is indicated
by the green horizontal dashed line.
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In summary, large size effects are observed in the
bending and torsion of designed lattices of triangular
prismatic unit cells. The size effects are inconsistent with
classical elasticity but are consistent with Cosserat elastic-
ity. Other theories of elasticity with more degrees of
freedom, such as those incorporated in the micromorphic
or Mindlin microstructure theory [31] or microstretch
elasticity [32], are not excluded; they are not necessary
for the present observations.
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