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We experimentally demonstrate topological edge states arising from the valley-Hall effect in two-
dimensional honeycomb photonic lattices with broken inversion symmetry. We break the inversion
symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron
nitridelike band structure. The edge states therefore exist along the domain walls between regions of
opposite valley Chern numbers. We probe both the armchair and zigzag domain walls and show that the
former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The
valley-Hall effect provides a new mechanism for the realization of time-reversal-invariant photonic
topological insulators.
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Photonic topological insulators (PTIs) are dielectric
structures that possess topologically protected edge states
that are under certain circumstances robust to scattering by
disorder [1–12]. There are two categories of PTIs: those
that break time-reversal symmetry [3,7] and those that
preserve it [8,9,11]. In PTIs that break time-reversal
symmetry, there exist one-way edge states, which ensure
their robustness, due to the lack of counterpropagating
partners at the same frequency. In those that preserve it,
there exist counterpropagating edge states that are protected
only against certain classes of disorder. However, the latter
can be more straightforward to realize, because they do not
require strong time-reversal breaking. PTIs have been of
interest due to the possibility of photonic devices that are
less sensitive to fabrication disorder.
In the valley-Hall effect, broken inversion symmetry in a

two-dimensional (2D) honeycomb lattice causes opposite
Berry curvatures in the two valleys of the band structure
[13,14] and has been realized in solid-state 2D materials
[15–19]. The valley-Hall effect is time-reversal invariant
and has common characteristics with the spin Hall effect
[20], where the two valleys in the band structure are used as
“pseudospin” degrees of freedom. It was shown theoreti-
cally that valley-Hall topological edge states would arise in
analogous photonic structures [21–27]. In addition, valley-
Hall topological edge states have also been recently studied
in the context of topological valley transport of sound in
sonic crystals [28].
Here, we present the experimental observation of pho-

tonic topological valley-Hall edge states at domain walls
between valley-Hall PTIs of opposite valley Chern num-
bers. The bulk-edge correspondence ensures the presence
of edge states: The change in the valley Chern number
across the domain wall is associated with the existence
of counterpropagating edge states [19,29,30]. We realize

photonic valley-Hall topological edge states in evanes-
cently coupled waveguide arrays, i.e., photonic lattices,
fabricated using the femtosecond direct laser-writing tech-
nique [31]. We probe different types of domain walls,
namely, the armchair and zigzag edges. We also enter a
fully gapped regime, which is not accessible in solid-state
2D materials. The topological protection associated with
the valley-Hall effect applies as long as a single valley is
populated and does not mix with the other valley. In
general, disorder that has only low spatial frequency
components (i.e., is sufficiently smooth) will not mix the
valleys.
We begin by describing our experimental system, which

is composed of an array of evanescently coupled wave-
guides arranged in a honeycomb lattice geometry. The
laser-writing technique allows us to arbitrarily control the
refractive index of the waveguides, by varying the average
power of the pulse train in the femtosecond direct laser-
writing procedure. The geometries of lattices having arm-
chair and zigzag edges at their domain wall are depicted in
Figs. 1(a) and 1(b), respectively (see Supplemental Material
for microscope images [32]).
The interface is between two regions (top and bottom)

that are both honeycomb lattices with opposite signs of
the on-site energy detuning between the two component
sublattices, which breaks inversion symmetry within each
given lattice. Experimentally, the detuning is carried out by
controlling the refractive index of the waveguide at each
site. Figure 1(c) shows the 2D bulk band structure of the
inversion-symmetry-broken honeycomb lattice, clearly
showing the two valleys. This is simply an inversion-
symmetry-broken variation of the photonic honeycomb
lattices described in Refs. [33–35], and, as in the graphene
band structure, two valleys are located at two nonequivalent
K andK0 points in the first Brillouin zone. The valley Chern
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number is defined as the difference in the integrated Berry
curvature associated with the two valleys. Since the Berry
curvature points in the opposite directions (þz;−z) in the
two valleys in a given lattice, and the sign is given by that
of the inversion-breaking term, it follows that the top and
bottom lattices in Figs. 1(a) and 1(b) must have opposite
valley Chern numbers and thus have valley-protected edge
states.
The diffraction of light through the waveguide array is

governed by the paraxial wave equation:

i∂zψðr; zÞ ¼ −
1

2k0
∇2

rψðr; zÞ −
k0ΔnðrÞ

n0
ψðr; zÞ

≡Hcontψðr; zÞ; ð1Þ

where ψðr; zÞ is the envelope function of the electric field
Eðr; zÞ ¼ ψðr; zÞ exp½iðk0z − ωtÞ�x̂, k0 ¼ 2πn0=λ is the
wave number within the medium, λ is the wavelength
of the laser, ω ¼ 2πc=λ, n0 is the refractive index of the
ambient glass, and ∇2

r is the Laplacian in the transverse
ðx; yÞ plane. Hcont is the continuum Hamiltonian for
propagation of the wave in the photonic lattice. Δn is
the refractive index of the waveguide relative to the index of
our medium, which acts as an effective potential in the
Schrödinger equation, Eq. (1). The inversion symmetry of
the lattice is broken by having different ΔnA and ΔnB for

waveguides in sublattices A and B, respectively, which is
analogous to having different on-site energies EA and EB in
the condensed-matter context. Furthermore, we write two
additional waveguides, which we call “straw waveguides”
(as discussed previously in Ref. [36]) into which light is
injected. The straws are weakly coupled to the lattice,
allowing them to act as an external drive that is injecting
light into the system without altering the system’s intrinsic
modes. Furthermore, varying the refractive index of the
straw, Δns, allows for the control of the propagation
constant (i.e., energy) of the modes being injected into
the structure. By analogy with condensed-matter systems,
the straw allows us to control the effective “Fermi energy”
of the system, allowing coupling only to modes of a given
energy E.
The emergence of valley-Hall topological edge states is

shown in a full-continuum calculation by diagonalizing
Hcont in Eq. (1) of 2D inversion-symmetry-broken honey-
comb lattice ribbons [as shown in Figs. 1(d)–(g)]. The unit
cell is a strip that is periodic in the horizontal direction (with
a periodicity given by the lattice constant) but is many unit
cells in the vertical direction and includes the domain wall
(in fact, it must contain a minimum of two domain walls).
The eigenvalues of the Schrödinger operator given in Eq. (1)
are the energies of the calculated eigenmodes. Band struc-
tures and therefore band gap sizes can be engineered by
sweeping acrossΔE=c0, whereΔE ¼ EA − EB and c0 is the

FIG. 1. (a) Schematic diagram of inversion-symmetry-broken honeycomb lattices with armchair and (b) and zigzag edge domain
walls. Red and green waveguides indicate a different refractive index, and blue indicates straw waveguides. Red shaded regions indicate
domain walls. (c) Band structure of the inversion-symmetry-broken graphene defined by u1b1 þ u2b2, where b1 ¼ ð2π=3aÞð1; ffiffiffi

3
p Þ and

b2 ¼ ð2π=3aÞð1;− ffiffiffi

3
p Þ are reciprocal lattice vectors and a is the lattice constant. (d) Continuum edge band structures with periodic

boundary conditions on both the x and y directions at λ ¼ 1650 nm and ky ¼ 0 when the armchair or (e) zigzag edges are placed at the
domain wall. (f),(g) Corresponding band structures at λ ¼ 1450 nm. Red and blue dashed lines indicate energies of eigenmodes that are
excited by coupling with the straw waveguide when we excited modes at midgap and significantly below midgap, respectively. Green
and red bands in (e) and (g) indicate edge states located at the domain wall close to and far away from straw waveguides, respectively.
Therefore, only the green bands are accessible in the experiment.
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coupling strength between the nearest-neighbor waveguides.
Experimentally, ΔE can be controlled by varying both ΔnA
and ΔnB, and c0 can be increased by decreasing the distance
between the nearest-neighbor waveguides, d, and increasing
λ; calculated c0ðλÞ at fixed d ¼ 19 μm for λ ¼ 1650 nm and
λ ¼ 1450 nm are 2.69 and 1.76 cm−1, respectively (for the
remainder of the work, we logically order long wavelength
before short wavelength, because the band gap increases
with a decreasing wavelength). The initial calibration of
c0ðλÞ is obtained by measuring beating in two coupled
waveguides as a function of the wavelength and distance
[37]. Figures 1(d) and 1(e) show band structures when
armchair and zigzag edges are placed at the domain wall,
respectively, where λ ¼ 1650 nm, d ¼ 19 μm, ΔnA ¼
2.50 × 10−3, and ΔnB ¼ 2.90 × 10−3, and Figs. 1(f) and
1(g) show corresponding band structures with the same d,
ΔnA, and ΔnB but with λ ¼ 1450 nm. For both structures
with armchair and zigzag edge domain walls, the bulk band
gap opens immediately as ΔE=c0 becomes nonzero.
However, the behaviors of the edge states are different for
each case: For the structure with the armchair domain wall,
the edge band gap opens immediately after ΔE=c0 becomes
nonzero [Figs. 1(d) and 1(f)]. For the structure with the
zigzag domain wall, there exist edge states at midgap for
small ΔE=c0 [Fig. 1(e)], which indicates the edge band gap
would open only at finite ΔE=c0 [Fig. 1(g)]. The two edge
state bands shown in green and red in Figs. 1(e) and 1(g) are
localized next to the straw waveguides (in the center of the
figure) and on the opposite termination (assuming periodic
boundary conditions), respectively. Therefore, only the green
bands will be physically accessible in the experiment. This
difference between the armchair and zigzag edges arises
because the orientation of the armchair termination is such
that it mixes the two valleys; since they may scatter between
them, this allows for a matrix element for a gap to open even
for small ΔE=c0. However, the zigzag edge runs parallel to
the line that connects the two valleys in k-space, implying
that the presence of the edge does not connect them,
allowing them to remain ungapped.
To experimentally observe the emergence of topological

edge states, a beam was launched at the input facet of the
sample through a lens-tipped fiber, which allows coupling
into a selected straw waveguide. The length of the sample
is 7 cm and the radii of the major and minor axes of the
waveguides are 4.9 and 3.2 μm, respectively. Here, the
refractive index of the straw waveguides was calibrated
to inject light at midgap and significantly below midgap, in
different devices. The energies of the straw waveguide
modes were calculated by diagonalizing Hcont of a single
waveguide. In Fig. 2, we present the observed diffracted
light at the output facet of the array for the case of midgap
driving [red dashed lines in Figs. 1(d)–1(g)]. Here, the
calculated energy of the straw waveguide modes at the
midgap energy were −4.39c0 and −11.87c0 for 1650 and
1450 nm, respectively. We plot the edge intensity ratio,

which is the ratio of the light intensity along the domain
wall (Iedge) to the light intensity in the straw, and the
penetration ratio, which is ratio of the intensity of light that
penetrates into the structure to the total light intensity (I).
First, in the photonic lattice with the armchair domain wall,
we observe that most of the light coupled into the straw
waveguide stayed in the straw, not coupling into the
waveguide array (Fig. 2; see Supplemental Material [32],
Movie 1). Both the measured edge intensity ratio and the
penetration ratio were relatively very small, which indicates
the presence of the band gap between the edge modes; i.e.,
no edge states are available to transport light through the
array. This experimental result agrees with the full-
continuum calculation having red dashed lines not crossing
any edge states in the band structure as shown in Figs. 1(d)
and 1(f). On the other hand, from the analogous structure
with the zigzag domain wall, we observed a clear excitation
of edge states along the domain wall, which becomes more
significant as the wavelength is increased (Fig. 2; see
Supplemental Material [32], Movie 2). This indicates that,
at λ ¼ 1450 nm, the band gap is fully open so that the straw
waveguide mode is not able to couple into the domain wall;
but as we increase λ to make ΔE=c0 subsequently decrease,
the band gap becomes smaller and eventually edge states
couple with the straw waveguide mode at midgap.
Furthermore, the sharp increase in the edge intensity ratio
and the penetration ratio indicates that there exist edge
states having midgap energy. This experimentally estab-
lishes the presence of valley-Hall edge states at midgap for
the zigzag edge, and the lack thereof for the armchair edge,
consistent with theoretical predictions described above.
We further probe the valley-Hall edge states by changing

Δns of the straw waveguides, while keeping ΔnA and ΔnB
the same, such that we excite modes at a different energy

FIG. 2. (a) Measured edge intensity ratio and (b) penetration
ratio when we excite modes at midgap. Blue and red dots are
measured at zigzag and armchair edge domain walls, respectively.
(Inset) Diffracted light measured at the output facet. Waveguides
where light is injected are marked with a yellow dashed circle.
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[blue dashed lines in Figs. 1(d)–1(g)]. Here, the calculated
energies of the straw waveguide modes were −4.98c0 and
−13.22c0 for 1650 and 1450 nm, respectively. For the
armchair edge, the energy coincides with edge bands at
λ ¼ 1650 nm but not at λ ¼ 1450 nm [Figs. 1(d) and 1(f)].
Therefore, we observe confinement to the input straw
waveguide at λ ¼ 1450 nm followed by increased penetra-
tion along the domain wall with an increasing wavelength
and strong penetration by λ ¼ 1650 nm (Fig. 3; see
Supplemental Material [32], Movie 3). For the zigzag
edge, however, the energy does not coincide with the
state along the domain wall boundary [Fig. 1(b)], whose
dispersion is shown in green in Figs. 1(e) and 1(g), but
rather the confined state that arises on the opposite side of
the system when periodic boundary conditions are imposed
in the vertical direction, shown in red in Figs. 1(e) and 1(g).
In other words, since the only edge states localized near the
straw waveguide are those drawn in green, there is no
penetration along the zigzag edge for this energy.
Therefore, no penetration is observed in the entire wave-
length range for the zigzag edge (Fig. 3; see Supplemental
Material [32], Movie 4).
In order to confirm that the small edge intensity ratio and

penetration ratio measured at λ ¼ 1450 nm are indeed the
consequence of a large edge state band gap, as opposed to
simply weak interwaveguide coupling, we injected light at
the center of the domain wall such that edge states are
directly excited [Figs. 4(a) and 4(b)]—in other words, we
did not attempt to fix the energy by using the straw. If the
small penetration ratios were the result of weak coupling
strength between the nearest-neighbor waveguides, the
injected light would be expected to be strongly confined
at the center of the waveguide array, where it is initially

injected. However, for both waveguide arrays with zigzag
and armchair domain walls, we observed light diffracting
along the domain wall and into the bulk. There is
significantly more diffraction along the zigzag edge as
compared to the armchair edge, because the armchair edge
band is nearly flat and the zigzag edge band is highly
dispersive [see Figs. 1(d)–1(g)]. However, in both cases,
there is clear diffraction into the bulk of the structure, as is
expected when we do not drive at a fixed energy using the
straw. Furthermore, we examine the case where the system
has no inversion breaking whatsoever, namely, ΔnA ¼
ΔnB ¼ Δns. In this case, there is no band gap and therefore
no edge state along the domain wall of Fig. 1(a),(b). Upon
injecting light into the straw waveguide, we observe
diffraction into the bulk for both structures shown in
Figs. 1(a) and 1(b) of the zigzag and armchair orientation
[Figs. 4(c) and 4(d)]. Some excitation of the left edge of the
structure is observed, corresponding to the bearded edge
state of the honeycomb lattice. Taken together, these results
show that the straw waveguide acts as a reliable tool for
fixing the propagation constant for use in directly observing
the presence in the valley-Hall edge states in the wave-
length range 1450–1650 nm.
In summary, we have experimentally realized photonic

valley-Hall topological edge states in 2D honeycomb
photonic lattices with broken inversion symmetry. We have
experimentally demonstrated that it is possible to open very
large band gaps and therefore enter a fully gapped regime
even for the structure with zigzag edge domain walls,
which was not possible in solid-state 2D materials.
Auxiliary straw waveguides placed at either end of the
domain walls made it possible to excite a desired energy
within the bulk band gap, allowing for a convenient tool for

FIG. 3. (a) Measured edge intensity ratio and (b) penetration
ratio when we excited modes significantly below midgap. Blue
and red dots are measured at zigzag and armchair edge domain
walls, respectively. (Inset) Diffracted light measured at the output
facet. Waveguides where light is injected are marked with a
yellow dashed circle.

FIG. 4. (a) Diffracted light measured at the output facet when
we inject directly at the center of the zigzag and (b) the armchair
domain walls. (c) Diffracted light measured at the output facet
when ΔnA ¼ ΔnB ¼ Δns and the straw waveguide mode is
initially excited for the zigzag orientation and (d) the armchair
domain walls. All measurements are carried out at λ ¼ 1450 nm.
Waveguides where light is injected are marked with a yellow
dashed circle.
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setting the waveguide array energies. Being a time-reversal-
invariant system, the valley-Hall effect could provide a
straightforward route towards realizing photonic topologi-
cal edge states, particularly in an on-chip platform. Thus,
while valley-Hall edge states are not rigorously protected
against any class of disorder, they will be protected against
disorder that is sufficiently smooth (and thus does not allow
intervalley scattering). The linear, static, and nonmagnetic
nature of the design will also allow for lower optical loss
compared to other approaches to topologically protected
photonic states (for example, magnetic materials are
typically lossy). Furthermore, the photonic valley-Hall
effect could provide a natural platform for photonic
quantum simulation of topological phenomena, perhaps
by coupling the photonic modes to atoms or excitons.
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Note added.—Recently, we became aware of an analogous
work in the microwave regime [38].
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