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We show that near-field electromagnetic heat transfer between multilayer thermal bodies can be
significantly enhanced by the contributions of surface states at multiple surfaces. As a demonstration, we
show that when one of the materials forming the multilayer structure is described by the Drude model, and
the other one is a vacuum, at the same gap spacing the resulting heat transfer can be up to 40 times higher as
compared to that between two semi-infinite materials described by the same Drude model. Moreover, this
system can exhibit a nonmonotonic dependency in its heat transfer coefficient as a function of the middle
gap spacing. The enhancement effect in the system persists for realistic materials.
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Electromagnetic near-field heat transfer is of great
importance in heat management at nanoscale since it
exceeds the blackbody limit by several orders of magnitude
[1–17]. In most configurations, one considers two semi-
infinite dielectric or metal bodies separated by a vacuum
gap [Fig. 1(a)]. The near-field heat transfer is then
significantly enhanced due to the presence of the surface
states at the body-vacuum interfaces. There has been a large
amount of literature seeking to maximize such near-field
heat transfer by controlling various material and structural
parameters [18–41].
Since the dominant contribution to heat transfer arises

from surface states, a natural idea for the enhancement is to
use multiple surface states in the heat transfer. For example,
one can consider the geometry shown in Fig. 1(c), where
each body consists of multiple layers of alternating materi-
als. The bodies are separated by a vacuum gap in the
middle. In this case, there are certainly a lot more surfaces
that can support surface states. Moreover, when the two
materials have positive and negative dielectric constants,
respectively, the resulting structure can homogenize to have
a hyperbolic effective permittivity tensor. References [36–
40] showed that near-field heat transfer can be enhanced
between two uniform hyperbolic media. On the other hand,
Miller et al. [41] analyzed a multilayer system as shown
in Fig. 1(c) without using homogenization, and noted
that the heat transfer is dominated by the contributions
of the surfaces immediately adjacent to the vacuum gap.
Intuitively, the spacing between the surfaces not immedi-
ately adjacent to the middle vacuum gap is large, and as a
result, the states on these surfaces do not contribute to heat
transfer significantly.
In this Letter, we reexamine the multilayer geometry

as shown in Fig. 1(c). We point out that under the right
condition, intermediate layers can facilitate the energy

transfer from surface states located away from the middle
vacuum gap. As a result, one can in fact achieve significant
enhancement of near-field heat transfer by having contri-
butions from multiple interfaces. Similar to the conclusion
of Ref. [41], this enhancement also cannot be accounted for
by the effective medium model. As a demonstration, we

FIG. 1. Geometries and exchange functions of the bulk system
[(a),(b)] and the multilayer system [(c),(d)]. The green dashed
lines in (b) and (d) correspond to the dispersion curves as
determined by Eqs. (5) and (4), respectively. For the metal with
a dielectric constant ϵm, we assume the Drude model in Eq. (1)
with ϵ∞ ¼ 1, ωp ¼ 2.5 × 1014 rad=s, and γ ¼ 1 × 1012 rad=s. For
the dielectric, we assume ϵd ¼ 1. Other parameters are
d0 ¼ dm ¼ dd ¼ 10 nm, T ¼ 300 K, and N ¼ 80 unit cells in
each body. These parameters are used throughout the Letter
unless otherwise mentioned.
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show that when one of the materials forming the multilayer
structure is described by the Drude model, and the other
one is a vacuum, with the correct choice of the parameters
for the Drude model, at the same gap spacing the resulting
heat transfer can be more than 40 times higher as compared
to that between two semi-infinite materials described by the
same Drude model. We also show that the enhancement
effect persists for realistic materials. Moreover, this system
can exhibit a nonmonotonic dependency in its heat transfer
coefficient as a function of the middle gap spacing. Prior to
our work, there has not been any indication that such
nonmonotonic behavior can occur in a planar geometry
[1–5,9–13].
We start with a brief overview of the fluctuational

electrodynamics for investigating electromagnetic heat
transfer in the multilayer system [40] as shown in
Fig. 1(c). For simplicity, we assume that the two bodies
are mirror images of each other. Both are periodic. Each
body consists of N unit cells. Each unit cell consists of a
lossless dielectric layer with a permittivity ϵd, and a lossy
material layer, with its permittivity ϵm described by the
Drude model:

ϵmðωÞ ¼ ϵ∞ − ω2
p

ωðωþ iγÞ : ð1Þ

In Eq. (1), ϵ∞, ωp, and γ are the permittivity at infinite
frequency, the plasma frequency, and the damping rate,
respectively. We refer to the material that is described by
the Drude model as “metal” for the rest of the Letter. We
maintain the two bodies at the temperatures of T þ ΔT and
T, respectively. When the middle vacuum gap size d0 is
smaller than the characteristic thermal wavelength, p-
polarized evanescent waves dominantly contribute to the
heat transfer and the heat transfer coefficient between the
two bodies is given by [4]

h ¼ ∂
∂T

Z∞

k0

βdβ
2π

Z∞

0

dω
2π

Zðω; βÞΘðω; TÞ; ð2Þ

where the exchange function Zðω; βÞ (0 ≤ Z ≤ 1) is

Zðω; βÞ ¼ 4fIm½rðω; βÞ�g2e−2κ0d0
j1 − rðω; βÞ2e−2κ0d0 j2 ; ð3Þ

rðω; βÞ is the Fresnel reflection coefficient of the p-
polarized evanescent waves from the vacuum to one of
the bodies, Θðω; TÞ ¼ ħω=ðeħω=kBT − 1Þ is the mean ther-
mal energy of a single optical mode at the frequency ω, ħ
and kB are the reduced Planck constant and the Boltzmann
constant, respectively. κ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − k20

p
(k0 < β) is the wave

number component normal to the layers in vacuum, where
k0 is the free-space wave number, and β is the lateral wave
number to the surfaces.

As a concrete example, we set the thicknesses of layers
to be equal to the width of the vacuum gap, i.e.,
dm ¼ dd ¼ d0 ¼ 10 nm, and the dielectric layers are set
to be a vacuum with ϵd ¼ 1. For metal layers, we choose
the parameters in the Drude model to be ϵ∞ ¼ 1,
ωp ¼ 2.5 × 1014 rad=s, and γ ¼ 1 × 1012 rad=s. This
choice of parameters results in a surface plasmon frequency
similar to the surface phonon-polariton frequency of the
interface between silicon carbide (SiC) and vacuum. We
select N ¼ 80 unit cells in each body and set a temperature
of T ¼ 300 K. These parameters are used throughout the
Letter unless otherwise mentioned.
The exchange function Zðω; βÞ in the multilayer system

of Fig. 1(c) is plotted in Fig. 1(d). Remarkably, we see that
there exists an area of near-unity value for Zðω; βÞ in the
ω-β phase space due to the contributions of surface states at
multiple surfaces. The outer circumference of the near-
unity area agrees well with the dispersion equation:

�
ϵm
κm

þ ϵd
κd

�
2

coshðκmdm þ κdddÞ

−
�
ϵm
κm

− ϵd
κd

�
2

coshðκmdm − κdddÞ þ
4ϵmϵd
κmκd

¼ 0; ð4Þ

where κm;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − ϵm;dk20

q
. For a given β, the solution of

Eq. (4) for ω corresponds to minimum and maximum
eigenfrequencies for an infinitely periodic structure with
the same unit cell as the finite structure we consider here.
[The derivation of Eq. (4) can be found in Supplemental
Material [42]] In contrast, in the ω-β phase space, for heat
transfer between two semi-infinite metal regions, Zðω; βÞ
has two near-unity lines [Fig. 1(b)], which agrees with the
dispersion equation of the coupled surface states at the
metal-vacuum interfaces [4]:

�
ϵm
κm

þ 1

κ0

�
2

eκ0d0 −
�
ϵm
κm

− 1

κ0

�
2

e−κ0d0 ¼ 0. ð5Þ

The presence of an area where Zðω; βÞ is near-unity
indicates that many states are contributing to the heat
transfer. Therefore, the surfaces that are located far away
from the middle gap must also contribute significantly to
the heat transfer. To illustrate the mechanism in which the
surfaces far away from the middle gap can contribute to
heat transfer, we consider the structure of Fig. 2(a), where
four lossless metal layers described by the lossless Drude
model are placed in the vacuum gap between two semi-
infinite lossy metal bodies described by the same Drude
model as above. There are ten surfaces that have the same
resonance frequency of ω0 ¼ ωp=

ffiffiffi
2

p
. In the regime of

β ≫ k0, we have approximately the same wave number
κm ¼ κd ¼ κ0 ¼ β, i.e., the same coupling rates between
neighboring surface states in the same spaces of
dm ¼ dd ¼ d0 ¼ 10 nm, and the damping rate becomes
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γ=2 [44]. In such a system, ten modes [two modes of them
are presented in Figs. 2(b)] contribute to the heat transfer
significantly. As a result, Zðω; βÞ has ten peaks of near-
unity at a constant β [Fig. 2(c)]. The dispersion curves of
these modes can be obtained using a similar transfer matrix
method as outlined in Supplemental Material [42]. On the
other hand, in the absence of the lossless metal layers, the
two surfaces of the semi-infinite metal bodies only couple
weakly and the heat transfer is significantly decreased
(Supplemental Material [42]). Comparing this example
with the structure in Fig. 1, we see that, in the structure
of Fig. 1, the interfaces away from the middle gap provide
additional surface states, which serve as “relay” that
enables surfaces farther away from the middle gap to
contribute to the heat transfer. This mechanism of using
surface states as relay in the near field underlies Pendry’s
superlens proposal [45], and has been applied in the control
of near-field heat transfer in a three-body system [46].
Here, we show that this relay mechanism can drastically
enhance the heat transfer in a multilayer system.
In the near-field heat transfer between two semi-infinite

metal bodies with a fixed gap size, there is an optimal
damping rate that maximizes the heat transfer coefficient
(Fig. 3, pink dash-dotted line). By the fluctuation-dissipa-
tion theorem, the strength of the fluctuating dipoles that
provide the source of the thermal radiation is proportional
to the imaginary part of the dielectric constant. Thus, when
the damping rate approaches zero there is no heat transfer
between the states on the two surfaces. On the other hand,
at too large a damping rate the effect of surface resonance
diminishes, which reduces the magnitude of the heat
transfer coefficient.
In contrast, for the multilayer system, the dependency of

the heat transfer coefficient h on the damping rate γ reaches
maximum at the small γ limit (Fig. 3, blue solid line). In
obtaining the results for the multilayer system, for each
value of γ, we increase the number of layers N until h no
longer changes with N. (See Supplemental Material [42]

for discussions of h as a function of γ for a fixed N.)
Intuitively, as γ decreases, the contributions from individual
surface states decrease. However, at the same time, the
number of surfaces that contribute to the heat transfer
increases as γ decreases. These two competing trends
balance each other at the low γ limit.
Based on the intuitive argument above, the heat transfer

coefficient for the multilayer system at the small γ limit can
be computed by an analytic model. At this limit, all surface
states contribute. The heat transfer coefficient can then be
approximated as

h ¼ ∂
∂T

Z∞

k0

βdβ
2π

ZωHðβÞ

ωLðβÞ

dω
2π

Θðω; TÞ; ð6Þ

where ωLðβÞ and ωHðβÞ are obtained from Eq. (4), and
correspond to the lower and upper bounds of the
eigenfrequencies of all states in the multilayer system
at a given β. In the regime where β ≫ k0, ωLðβÞ¼
ω0f1−½ðϵd−1Þsinh2ðβd0=2Þþϵd�=½ðϵ∞þϵdÞsinh2ðβd0=2Þþ
ϵd�g1=2 and ωHðβÞ¼ω0f1þ½ð1−ϵdÞcosh2ðβd0=2Þþϵd�=
½ðϵ∞þϵdÞcosh2ðβd0=2Þ−ϵd�g1=2. We see that Eq. (6)
agrees excellently with the numerical results in the low
γ limit (Fig. 3).
In the inset of Fig. 3, we plot the ratio of heat transfer

coefficient h between the multilayer system and the bulk
system. For the same Drude model parameters, the multi-
layer system exhibits greatly enhanced h, especially in the
regime of low γ, where the enhancement can be as high as
40-fold. Even when allowing γ to vary, the maximum h in
the multilayer case, which occurs at the low γ regime, still
exceeds the maximum in the bulk system by a factor of 2.

FIG. 3. Heat transfer coefficients h as a function of the damping
rate γ. The blue solid, pink dash-dotted, or green dashed line
corresponds to the case of multilayer system, bulk system, or
effective medium model system, respectively. The geometries and
all parameters are the same as in Fig. 1 except for γ and the
number of unit cells N in the multilayer system, where for each
value of γ, N is increased until h no longer changes with N. The
horizontal black dash-double-dotted line represents h in the small
γ limit [Eq. (6)]. The inset shows the enhancement factor of h of
the multilayer system with respect to the bulk system as a
function of γ.

FIG. 2. (a) Two semi-infinite metal bodies separated by a
vacuum gap size of 90 nm and four lossless metal layers are
placed between them. (b) Mode profiles at ðω; βÞ that are
indicated by the cyan circle (top profile) and the pink square
(bottom profile) in (c), respectively. (c) Exchange function for the
structure, with ten dispersion curves of the structure super-
imposed shown as red and green curves.
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The results here indicate the significant potential of using a
multilayer system for the enhancement of near-field heat
transfer, especially in material systems where the material
damping rate is below the optimal damping rate for semi-
infinite systems.
In the multilayer system as considered here, the perio-

dicity is far smaller as compared to the relevant thermal
wavelength at the chosen temperature. Such a multilayer
system is usually described by an effective medium model,
where the parallel and perpendicular components of the
permittivity, as defined with respect to the surface of the
layers, are approximately given by ε⫽ ¼ ðεmdm þ εdddÞ=
ðdm þ ddÞ and ε⊥ ¼ εmεdðdm þ ddÞ=ðεmdd þ εddmÞ [35].
For the parameters that we choose here, the effective
medium model corresponds to a hyperbolic medium in
the relevant thermal wavelength range. In Fig. 3, we also
plot the heat transfer coefficient h as a function of damping
rate γ for such an effective medium model. We see that h of
the multilayer system significantly exceeds the prediction
from the effective medium model. This is in contrast with
the case considered in Ref. [41], where the heat transfer
coefficient of the multilayer system falls below that of the
effective mediummodel. Compared with the corresponding
multilayer system, the exchange function of the effective
medium model has far less contributions from the surface
states (Supplemental Material [42]), which explains the
discrepancy.
In Fig. 4, we plot the heat transfer coefficient h for the

multilayer system as considered in Fig. 1, where we vary
the middle gap size while keeping all other parameters
fixed. We also compare the behavior of the multilayer layer
system with that of the bulk system as described by the
Drude model, and the effective medium model that corre-
sponds to the multilayer system. For the bulk system, h
exhibits the well-known 1=d20 dependency. We see that the
behavior of the multilayer system is similar to the bulk in
the small d0 limit. For the multilayer system, the relay
mechanism, as we discussed in Fig. 2, works best when d0

is comparable to the layer thickness, similar to the optimal
condition for the geometry that exhibits the superlens effect
[45]. In the small d0 limit, the relay mechanism is no longer
effective. The heat transfer is then dominated only by the
surfaces immediately adjacent to the middle gap. And,
therefore, the behavior of the multilayer system approaches
that of the bulk. In the large d0 limit, the behavior of the
multilayer system approaches that of the effective medium,
where the heat transfer is mostly carried by waves with
relatively small wave vector components parallel to the
interface. Such waves, having a longer effective wave-
length, are well described by the effective index model.
Remarkably, the multilayer system we consider can

exhibit a nonmonotonic dependency of heat transfer on
the middle gap size d0. As we reduce d0 from 9 to 6 nm, the
heat transfer actually decreases (Fig. 4). As d0 is reduced
from 10 nm, which is the optimal middle gap size for the
relay mechanism, the reduction of the contributions from
surfaces away from the middle gap more than offsets the
increase of the contributions from the surfaces adjacent to
the middle gap, leading to the overall reduction of the heat
transfer coefficient h. Such a nonmonotonic dependency of
h on d0 has been previously observed numerically only in
systems with somewhat unusual geometries, such as
between a sphere and a plate with a hole in it [47], and
has never been noted in a planar system before.
Up to now in this Letter, we have chosen the Drude

model with arbitrary parameters in order to illustrate the
rich physics in this system. In what follows, we show that
one practically important aspect of our results, i.e., the
significant enhancement in the heat transfer, persists in
realistic structures. We choose SiC as the “metal” layer
since it has a negative dielectric constant in the frequency
range of interest, and is also commonly used in the study of
near-field heat transfer. SiC has a permittivity ϵmðωÞ ¼
ϵ∞ðω2

LO − ω2 − iγωÞ=ðω2
TO − ω2 − iγωÞ, with parameters

of ϵ∞ ¼ 6.7, ωLO ¼ 1.83 × 1014 rad=s, ωTO ¼ 1.49×
1014 rad=s, and γ ¼ 8.97 × 1011 rad=s [3]. As has been

FIG. 4. Dependency of heat transfer coefficients h as a function
of the size d0 of the middle vacuum gap, for the multilayer system
(blue solid line), bulk system (pink dash-dotted line), and
effective medium model system (green dashed line). The inset
shows the enhancement ratio as a function of d0.

FIG. 5. Enhancement of heat transfer coefficients in the multi-
layer system [Fig. 1(c)] with respect to the bulk system [Fig. 1(a)]
as a function of the number of unit cells. The “metal” layers
correspond to SiC. The dielectric layers are vacuum (blue circles),
dielectric with ϵd ¼ 2 (pink squares), and dielectric with ϵd ¼ 4
(green triangles).
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noted in Ref. [48], SiC has a damping rate that is in fact less
than optimal for maximizing near-field heat transfer.
Therefore, from our discussions above in Fig. 3, the use
of multilayer geometry is particularly beneficial to enhance
heat transfer in systems based on SiC. In Fig. 5, we
consider three different systems where the dielectric layers
have ϵd ¼ 4, 2, and 1, respectively, and we plot the heat
transfer coefficient normalized against that of two semi-
infinite SiC regions in each case as the number of unit cells
varies. All three systems show significant enhancement
against heat transfer between two semi-finite SiC regions.
As ϵd increases, heat transfer is decreased due to the
mismatch of resonance frequencies between ωd ¼
ωp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵd þ 1

p
at interfaces within the thermal bodies and

ω0 ¼ ωp=
ffiffiffi
2

p
at the interface of the middle vacuum gap and

each of the SiC layers. Nevertheless, an enhancement factor
of 2 is obtained when ϵd ¼ 2, which corresponds to
materials such as barium fluoride and strontium fluoride.
Therefore, significant enhancement can be observed with
realistic materials. In addition, we can see significant
enhancement even with N < 5. A large number of layers
is not needed for the enhancement. The enhancement factor
we observe here is significantly higher as compared to
previous calculations assuming realistic material parame-
ters. The improvement here arises primarily from our use of
dielectric layers with low dielectric constants. When
ϵd ¼ 4, we observe a decreased enhancement factor of
1.5, which is only slightly higher than what has been
obtained in previous works, where the dielectric material is
assumed to be silicon dioxide with ϵd ≈ 3.9 [35–38,41] or
germanium with ϵd ≈ 16 [39,40].
In conclusion, we have shown that heat transfer in a

multilayer system can be significantly enhanced by the
contributions of surface states at multiple surfaces. The
enhancement of heat transfer is most pronounced when the
multilayer system consists of low-loss metal layers and
low-permittivity dielectric layers. In addition, the multi-
layer system can exhibit a nonmonotonic dependency of
the heat transfer on the middle gap spacing. The enhance-
ment of heat transfer persists for realistic material systems.
Our results provide analytical insights for heat transfer
enhancement at nanoscale.
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