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We consider a hybrid quantum many-body system formed by a vibrational mode of a nanomembrane,
which interacts optomechanically with light in a cavity, and an ultracold atom gas in the optical lattice of
the out-coupled light. The adiabatic elimination of the light field yields an effective Hamiltonian which
reveals a competition between the force localizing the atoms and the membrane displacement. At a critical
atom-membrane interaction, we find a nonequilibrium quantum phase transition from a localized
symmetric state of the atom cloud to a shifted symmetry-broken state, the energy of the lowest collective
excitation vanishes, and a strong atom-membrane entanglement arises. The effect occurs when the atoms
and the membrane are nonresonantly coupled.
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Hybrid quantum systems combine complementary
fields of physics, such as solid-state physics, quantum
optics, and atom physics, in one setup. Recently, a hybrid
atom-optomechanical system [1] has been realized exper-
imentally [2] in which a single mechanical mode of a
nanomembrane in an optical cavity is optically coupled to a
far distant cloud of cold 87Rb atoms residing in the optical
potential of the out-coupled standing wave of the cavity
light. When displaced, the membrane experiences the
radiation pressure force of the cavity light, and in the
bad-cavity limit, the field follows the membrane displace-
ment adiabatically. This modulates the light phase, which
leads to a shaking of the atom gas in the lattice. The
nanomechanical motion of the membrane then couples
nonresonantly to the collective motion of the atoms. The
aim is twofold [1–7]: The gas can cool the nanomembrane,
and emergent phenomena of the correlated quantum many-
body system are of interest [8–17].
State-of-the-art optomechanics [3–6] is nowadays able to

realize optical feedback cooling [18,19] of the mechanical
oscillator to its quantum-mechanical ground state [20,21].
Yet the resolved sideband limit allows ground-state cooling
only if the oscillator frequency exceeds the photon loss rate
in the cavity [22–24]. Hence, cooling a macroscopic low-
frequency nanomembrane close to its ground state is so far
not possible. One promising alternative [1,7] is to utilize an
ultracold atom gas, which has been demonstrated recently
[2] by sympathetic cooling down to 650 mK. Current
investigations aim toward a coherent state transfer of robust
quantum entanglement [15].
Apart from cooling the nanomembrane, an interesting

fundamental feature is the collective quantum many-body
behavior of the hybrid system. For instance, the atom-atom
interaction can in principle be coherently modulated by the

backaction of the cavity light on the nanooscillator. By this,
a long-range interaction emerges which resembles that of a
dipolar Bose-Einstein condensate (BEC) [25]. In fact, a
simpler hybrid quantum many-body system has also been
implemented in the form of a BEC in an optical lattice
inside a transversely pumped optical cavity. A Dicke
quantum phase transition between a normal phase and a
self-organized super-radiant phase occurs [26–30].
Moreover, optical bistability [31,32], a roton-type softening
in the atomic dispersion relation [26,33–35], and optome-
chanical Bloch oscillations [36] have been uncovered.
Similar effects occur also for polarizable and thermal
particles in a cavity at finite temperature [37–39].
In this Letter, motivated by recent experiments [2,10], we

study a hybrid atom-optomechanical setup in the form of a
“membrane in the middle” cavity [1,2,8–11]; see Fig. 1.
Importantly, the light-mediated coupling between the atoms
and the membrane is nonresonant here. We include the full
lattice potential and also the atomic interaction in the gas on
the mean-field level. The numerical solution of the gener-
alized Gross-Pitaevskii equation confirms the validity of an
analytic approach based on a Gaussian condensate profile.
Tuning the atom-membrane coupling by changing the
laser intensity, a nonequilibrium quantum phase transition
(NQPT) occurs between a localized symmetric state and a

FIG. 1. Sketch of the hybrid system. A nanomechanical
membrane in an optical cavity is optically coupled to the
vibrational motion of a distant atom gas.
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symmetry-broken quantum many-body state with a shifted
cloud-membrane configuration. It is fueled by the com-
petition of the lattice, trying to localize the atoms at the
minima, and the membrane displacement which tries to
shake the atoms. Near the quantum critical point, the
energy of the lowest collective excitation mode vanishes,
and the order parameter of the symmetry-broken state
becomes nonzero, leading to a substantial atom-membrane
entanglement. The mode softening is accompanied by a
roton-type bifurcation of the decay rate of the collective
eigenmodes. Indeed, an instability and collective self-
oscillations of a coupled atom-membrane device have been
reported recently [10].
Model.—We consider a single mechanical mode of a

nanomembrane with frequency Ωm placed in a low-finesse
optical cavity. The outcoupled light forms an optical lattice
in which a BEC is placed. In a quasistatic picture, a finite
displacement of the membrane changes the position of the
lattice sites, leading to a linear displacement force on the
atoms, which induces transitions to higher motional bands.
A backaction of the atomic motion on the membrane is
induced by a displacement of their center-of-mass position,
which, again, redistributes the photons in the propagating
beams. Consequently, the light field inside the cavity
changes, which alters the radiation pressure on the mem-
brane. To achieve a sizable atom-membrane coupling, the
typical energy scale of the BEC has to match the membrane
frequency. This can be controlled by the light intensity
which determines the lattice depth. The setup is sketched in
Fig. 1 and modeled by a standard Hamiltonian, which
describes the atom-membrane coupling directly [1,40]. In
the bad-cavity limit, strong photon dissipation allows us to
adiabatically eliminate the light field in a Born-Markov
approximation [1], which yields the effective Hamiltonian

H ¼
Z

dzΨ†ðzÞ
�
−ωR∂2

z þ V sin2ðzÞ þ g
2
Ψ†ðzÞΨðzÞ

�
ΨðzÞ

þ Ωma†a − λða† þ aÞ
Z

dzΨ†ðzÞ sinð2zÞΨðzÞ: ð1Þ

Here, ωR ¼ ω2
L=2m is the recoil frequency of an atom with

mass m, V is the optical lattice depth, and ωL is the laser
frequency. The last term describes the effective atom-
membrane coupling with strength λ. Here, aða†Þ and
ΨðΨ†Þ are the bosonic annihilation (creation) operators
of the membrane and bosons. Moreover, we have intro-
duced a local atom-atom interaction with strength g and
neglected long-range interaction, which is generated by the
photon field. This is justified when the laser frequency is far
detuned from the closest atomic transition.
In the condensate regime, a large fraction of the atoms

occupies the ground state. Here, we consider weakly
interacting atoms that are also weakly coupled to the
membrane. Thus, when g; λ ≪ ωR;Ωm, the field operator
ΨðzÞ can be approximated by a complex function ψðzÞ

according to ΨðzÞ≃ ffiffiffiffi
N

p
ψðzÞ, where N denotes the num-

ber of atoms. To describe the dynamics, we use the mean-
field Lagrangian density associated with the Hamiltonian
and given in Eq. (S9) of Ref. [40] with the complex number
hai= ffiffiffiffi

N
p ¼ α ¼ α0 þ iα00 and the volume V. We restrict the

problem to a single lattice site—i.e.,
R
dz →

R π=2
−π=2 dz and

V ¼ π—and use periodic boundary conditions. Then, we
describe the dynamics analytically with a Gaussian ansatz
for the condensate wave function and, in parallel, solve the
generalized Gross-Pitaevskii equation (GPE) without fur-
ther approximation. The Euler-Lagrange equations yield

i∂tψ ¼ ½Vsin2ðzÞ − ωR∂2
z þ gNjψ j2 − 2

ffiffiffiffi
N

p
λα0 sinð2zÞ�ψ ;

i∂tα ¼ ðΩm − iγÞα −
ffiffiffiffi
N

p
λ

Z
dz sinð2zÞjψ j2; ð2Þ

where we have introduced a phenomenological damping of
the mechanical mode with a rate γ. This is due to finite
losses caused by the clamping of the membrane as well as
the radiation pressure.
From Eq. (2), we see that the two potential contributions

V sin2ðzÞ and ffiffiffiffi
N

p
λðαþ α�Þ sinð2zÞ can dynamically com-

pete with each other, depending on the backaction of the
membrane on the atoms, and thus on the collective behavior
of the atoms. This competition yields to the formation of
two different stable phases and a NQPT. It is manifest in a
change of the center-of-mass position of the condensate, or
the membrane displacement, equivalently. Formal similar-
ities to the NQPT in the Dicke-Hubbard model [29,30]
exist. There, however, a self-organized symmetry-broken
checkerboard lattice occupation is formed above a critical
transverse pump strength which induces a coherent light
scattering into the longitudinal cavity mode [26,27]. In the
present setup, the spatial periodicity of the optical lattice
remains unchanged, and symmetry breaking is manifest in
a global collective shift of the potential.
To describe a realistic physical setup, we consider a

membrane with Ωm ¼ 100ωR, which corresponds to a
frequency of several hundred kHz. Here, we describe the
condensate profile by a Gaussian [41]

ψðz; tÞ ¼
�

1

πσðtÞ2
�

1=4
e−f½z−ζðtÞ�2=2σðtÞ2gþiκðtÞzþiβðtÞz2 ð3Þ

with a time-dependent width σðtÞ, centered at the position
ζðtÞ, and the corresponding phases βðtÞ and κðtÞ. For an
accurate description, we consider V ≳ 10ωR and Ng ≪ V.
To find the equations of motion of these variational
parameters, we determine the lowest cumulants of the
condensate probability distribution whose dynamics is
described by the generalized GPE [Eq. (2)]. Thus, we
multiply the first line of Eq. (2) by ψ�ðzÞðz − ζÞ and
integrate over z; and likewise, we multiply the same line by
ψ�ðzÞ½ðz − ζÞ2 − σ2=2� and integrate over z. This yields
four linearly independent equations for the variational
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parameters, two of which are _ζ ¼ 2ωRðκ þ 2βζÞ and
_σ ¼ 4ωRβσ. With these, we find

2Ω−1
m ½α̈0 þ 2γ _α0� ¼ −∂α0E;

ð2ωRÞ−1ζ̈ ¼ −∂ζE;

ð4ωRÞ−1σ̈ ¼ −∂σE; ð4Þ

where the potential energy E ¼ −
R
dzLj _α¼ _ψ¼0 reads

E¼ gNffiffiffiffiffiffi
8π

p
σ
−
V

ffiffiffiffiffiffiffiffiffiffiffiffi
1−S2

p
þ4

ffiffiffiffi
N

p
λα0S

2expðσ2Þ þ ωR

2σ2
þ ~Ωmα

02; ð5Þ

with the effective frequency ~Ωm ¼ Ωm þ γ2=Ωm.
Importantly, we have defined the order parameter S ¼
sinð2ζÞ of the NQPT, which describes the center-of-mass
position of the condensate.
Quantum phase transition in the mean-field regime.—

Due to the mechanical damping, the combined system will
eventually equilibrate. The steady state is characterized by
those values α00; σ0;S0 which minimize the potential energy
functional Eðα0; σ;SÞ. Indeed, by setting all time deriva-
tives in Eq. (4) to zero and using Eq. (5), we find the
relation

ffiffiffiffi
N

p
λS0 ¼ ~Ωmα

0
0e

σ2
0 , so that the equilibrium

width σ0 and order parameter S0 solve the coupled
equations ð1−S2

0Þ1=2½ωR þ gNσ0=
ffiffiffiffiffiffi
8π

p � ¼ Vσ40e
−σ2

0 and
S0½Nλ2ð1−S2

0Þ1=2−Nλ2c;Ve
σ2
0 �¼0, with Nλ2c;V ¼ ~ΩmV=4.

For a qualitative understanding of the role of increasing
λ, we define the potential energy surface as a function of a
single variable; i.e., either σ or S (or α0). For instance,
EðσÞ≡ E½α00ðσÞ; σ;S0ðσÞ� exhibits only a single minimum
for σ > 0. Interestingly enough, as a function of the control
parameter λ, the energy EðSÞ has either one stable state or
two minima. This is visualized by the normalized potential
energy surface ϵðS; λÞ ¼ ½EðSÞ − EðS0Þ�=maxfEðSÞ−
EðS0Þg in Fig. 2(a). The red curve marks the configuration
of minimal energy ϵðS0; λÞ ¼ 0. There exists a critical
coupling λc, such that for smaller values λ < λc, the energy
surface forms a single potential well, whereas for λ > λc, it

becomes a double-well potential with a local maximum
at S ¼ 0.
The order parameter as a function of the atom-membrane

coupling λ is shown in Fig. 2(b) for different values of the
lattice depth. The solid curves show the results of the
analytical approach, whereas the dashed lines refer to
the numerical solution of the full GPE. For small values
λ, the condensate is symmetrically located around the
lattice minima ζ0 ¼ jπ with j ∈ Z, so the order parameter
vanishes, S0 ¼ 0. Consequently, the membrane displace-
ment α00 ∼ S0 vanishes. The NQPT then occurs at a critical
coupling λc, which follows from solving the implicit
equation

ωR þ gNffiffiffiffiffiffi
8π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

λc
λc;V

s
¼ 4V

�
λc;V
λc

ln
λc
λc;V

�
2

: ð6Þ

Above λc, the atoms start to move away from the positions
jπ to the displaced lattice minima. The order parameter

becomes finite: S0 ¼ �Θðλ − λcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλc;V=λÞ4e2σ20

q
and

can be scaled to a single curve as shown in the inset of
Fig. 2(b). The condensate width σ0ðλÞ is shown in Fig. 2(c)
and is independent of λ below λc, whereas it decreases in
good approximation with ∼1=

ffiffiffi
λ

p
above λc. In accordance

with an expansion of the energy surface with respect to the
order parameter, all these observables show within our
mean-field treatment that the hybrid system undergoes a
second-order NQPT. In contrast to the super-radiant phase
of the Dicke phase transition, a global displacement of the
lattice minima and membrane is observed, and the lattice
periodicity is not changed.
Collective excitation modes.—Solving the complete set

of equations of motion (4) is challenging, but their
linearized forms give already an insight into the collective
excitation energies. We consider small deviations from the
stationary state ½α00; σ0;S0ðor ζ0Þ� in the forms α0ðtÞ ¼
α00 þ δα0ðtÞ, σðtÞ ¼ σ0 þ δσðtÞ, and ζðtÞ ¼ ζ0 þ δζðtÞ,
and we linearize the equations of motion in the deviations.
We find Eq. (S10) in the Supplemental Material [40].

FIG. 2. (a) Normalized potential energy surface ϵðS; λÞ as a function of S and λ for V ¼ 200ωR. The red line indicates the minimum
ϵðS0; λÞ ¼ 0. (b) Positive value of S0 and (c) condensate width σ0 as a function of λ for different values V as indicated in (c). The dashed
curves show the GPE results for comparison. The inset in (b) shows the order parameter S0 as a function of λ=λc for which all data points
collapse to a single curve. For all panels, we have used g ¼ 0, Ωm ¼ 100ωR, and γ ¼ 20ωR.
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Interestingly, the oscillation frequencies also indicate the
NQPT. Below λc, the bare frequency ωζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4ωRV

p
e−σ

2
0
=2

of the ζ mode is independent of λ, whereas above λc, it
grows linearly in λ according to ωζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4ωRV

p
e−σ

2
0λ=λc.

In addition, the eigenmodes can be determined [40] from
the differential equations in the vector-matrix form
_x ¼ Mx. The eigenvalues νk ¼ iωk − γk of M define the
eigenfrequencies ωk and the decay rates γk. Likewise, we
estimate the eigenmodes via the GPE by considering small
deviations from the ground state according to ψðz; tÞ ¼
eiμt½ψ0ðzÞ þ δψðz; tÞ� and αðtÞ ¼ α0 þ δαðtÞ. Linearization
with respect to the deviations results in a differential
equation of the form _wðzÞ ¼ MGPwðzÞ, where the eigen-
values of MGP provide the eigenfrequencies and the decay
rates [40].
The eigenfrequencies of the collective excitations with-

out interatomic collisions are shown in Fig. 3(b), and the
corresponding decay rates in Fig. 3(c), as a function of the
atom-membrane coupling strength. [Figs. S2(b) and S2(d)
[40] show zooms to the critical region.] The dashed lines
show the frequency (rate) calculated in the GPE approach,
whereas the solid lines refer to the analytical results.
Approaching the critical coupling, the lowest excitation
frequency (red, triangles) in Fig. 3(b) decreases with a
roton-type behavior according to ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2=λ2c

p
. At the

same time, the corresponding decay rate increases to a
maximum at λc. In a narrow rangeΔλ≃ 0.1ωR around λc, a
bifurcation of the decay rate can be observed, whereas the
lowest excitation frequency is constantly zero. Such a
behavior is well known from atomic ensembles with
long-range interactions [34,35,42,43] which, in the present
case, are mediated by the membrane. Indeed, adiabatically

eliminating the membrane mode introduces a long-range
interaction potential that takes the form Gðz; z0Þ ¼
G0 sinð2zÞ sinð2z0Þ with G0 ¼ −2λ2= ~Ωm. Moreover, the
ground state (γ ¼ 0) of the collective modes is a three-
mode squeezed state; see Eq. (S14) [40]. This generates a
strong atom-membrane entanglement close to the critical
point. This behavior is manifest in a rising logarithmic
negativity EN [44–46] at the critical point, which is shown
in Fig. 3(a). For γ ¼ 0, it diverges there, while it is expected
to be finite for γ > 0 [44]. Finally, we note that although all
figures refer to the case g ¼ 0, no qualitative differences
occur for weakly interacting atoms [40].
Experimental realization.—An experimental observa-

tion is possible in existing setups; e.g., in Ref. [11].
Current optical lattices with V ≃ 2000ωR readily achieve
a resonant coupling [40]; i.e., ωζ ≃Ωm, with

ffiffiffiffi
N

p
λ≃ 3ωR.

The fact that the effective atom-membrane coupling in our
scheme does not have to be resonant facilitates the
realization. For instance, by loading the atoms in a lattice
with V ¼ 30ωR,

ffiffiffiffi
N

p
λc ≃ 30ωR can be reached by tuning

the laser power and cavity finesse [1]. Moreover, an
independent tuning of λ can be achieved by applying a
second laser which is slightly misaligned with the first one
and which generates an optical lattice of the same perio-
dicity but shifted by π=2. The membrane eigenfrequency
shown in Fig. 4(a) can readily be measured spectroscopi-
cally with a relative precision of much below 1%, so that
the cusp at λc will be clearly resolvable. In addition, the
NQPT can also be detected via the momentum distribution
of the atoms shown in Fig. 4(b), together with its width for
varying λ in Fig. 4(c). Below λc, the width is constant, while
it increases monotonically for λ > λc.
Conclusions.—We have shown that a hybrid atom-

optomechanical system possesses a nonequilibrium quan-
tum phase transition between phases of different collective
behavior. Based on a Gross-Pitaevskii-like mean-field

(a)

(b)

(c)

FIG. 3. (a) Atom-membrane entanglement by the logarithmic
negativity of the ground state (γ ¼ 0) between membrane and
either atom displacement (purple) or condensate width (pink).
(b) Frequencies of collective excitations. (c) Decay rates of the
collective eigenmodes (some curves are scaled by the factors
indicated). Curves in blue, green, and red correspond to the
membrane mode, the condensate width mode, and the atomic
displacement excitation, respectively. The dashed curves show
the GPE results. The parameters are V ¼ 200ωR, Ωm ¼ 100ωR,
γ ¼ 20ωR, and g ¼ 0.

(a)
(b)

(c)

FIG. 4. (a) Membrane excitation frequency and (b) momentum
distribution jnðkÞj of the atoms in a single well. (c) Width of jnðkÞj
in dependence of λ. The dotted vertical line indicates λc. The
parameters are V ¼ 200ωR, Ωm ¼ 100ωR, γ ¼ 20ωR, and g ¼ 0.
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approach, the steady state of an ultracold atomic conden-
sate in an optical lattice, whose motion is nonresonantly
coupled to a single mechanical vibrational mode of a
spatially distant membrane, has been analyzed. The cou-
pling between both parts occurs via the light field of a
common laser. Below the critical effective atom-membrane
coupling λc, the atoms in the combined atom-membrane
ground state are symmetrically distributed around their
lattice minima. At the quantum critical point, a nonequili-
brium quantum phase transition to a symmetry-broken state
occurs in which the atomic center-of-mass and membrane
displacements are all either positive or negative. Near the
NQPT, the lowest excitation mode shows roton-type
characteristics in the excitation frequency, a mode softening
and a bifurcation of the decay rate, accompanied by a
strong atom-membrane entanglement. A potential applica-
tion could be to measure the atom momentum fluctuations
nondestructively by measuring the fluctuations of the
membrane displacement.
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