
 

Steady State Entanglement beyond Thermal Limits
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Classical engines turn thermal resources into work, which is maximized for reversible operations. The
quantum realm has expanded the range of useful operations beyond energy conversion, and incoherent
resources beyond thermal reservoirs. This is the case of entanglement generation in a driven-dissipative
protocol, which we hereby analyze as a continuous quantum machine. We show that for such machines the
more irreversible the process, the larger the concurrence. Maximal concurrence and entropy production are
reached for the hot reservoir being at negative effective temperature, beating the limits set by classic
thermal operations on an equivalent system.

DOI: 10.1103/PhysRevLett.120.063604

Introduction.—Engines rely on the ability to perform
useful operations by exploiting incoherent resources.
Typical examples are classical thermal machines, which
extract work from a “working fluid” upon transfer of heat
from a hot to a cold bath: the efficiency of such machines is
defined by the ratio between the work produced and the
heat absorbed from the hot bath. In the quantum realm, the
working medium may provide a nonclassical inner struc-
ture. New out-of-equilibrium scenarios can thus be envi-
sioned, in which different quantized transitions are coupled
to independent heat baths. This strategy can be used, e.g., to
invert the population of some medium by optical pumping,
and to extract work by stimulating the transition: as a matter
of fact, lasers and micromasers have long been interpreted
as out-of-equilibrium heat engines [1,2].
More generally, optical pumping schemes are used to

selectively prepare and maintain the working medium in a
given nontrivial target steady state that is different from its
thermal equilibrium state. In this spirit, the potential of
achieving steady state entanglement of pairs of qubits
through quantum optical bath engineering has started to
be explored [3–16], most of the attention being focused on
thermal baths as purely incoherent sources of nonclassical
correlations [17–22]; however, for the latter protocols the
amount of entanglement that can be generated without any
additional feedback or filtering operation is typically rather
modest [21,22]. By using reservoirs acting on collective
degrees of freedom of the qubits, the upper theoretical limit
for the concurrence can be increased to C ¼ 1=3, which is
asymptotically reached only under unrealistically large
temperature gradients between the two reservoirs [17,19].
While no work is effectively extracted, these operations

are still typical of a machine, for they reach a useful goal
(i.e., the preparation of some out-of-equilibrium desired
steady state) by exploiting incoherent resources. This calls

for the definition of new criteria to assess the performance
of such devices operating in the continuous regime [23–
25]. On a parallel route, looking at the inner structure of a
quantum system as a thermodynamic resource can be
exploited, e.g., to increase the efficiency of miniaturized
engines [26–28]. In this Letter, we study and thermody-
namically characterize an optical pumping-based quantum
machine, which allows for the generation of steady state
entanglement in a bipartite system coupled to two incoher-
ent reservoirs at different temperatures. We show that the
machine performs all the better as its lead to larger amounts
of steady state entropy production, consistently with the
irreversible character of the protocol. Our study is based on
a general definition of entropy production taken from
stochastic thermodynamics [29–33], which interestingly
allows us to extend the theoretical analysis to the case of
reservoirs with negative effective temperatures. This gen-
eralized definition of baths allows us to increase the amount
of steady state entanglement beyond the known limits
imposed by classical heat baths at thermal equilibrium
[17,19]. Finally, we propose a practical realization of the
quantum thermal machine based on two independent and
incoherently pumped qubits that are coupled to a leaky
cavity mode [34,35].
Optical pumping and steady state entanglement.—As an

elementary model of a driven-dissipative quantum machine
producing steady state entanglement, we consider a generic
bipartite quantum system consisting of two independent
qubits of ground and excited levels respectively denoted
j0ii and j1ii (i ¼ 1, 2). The internal level structure of the
composite system is then characterized by a diamo-
ndlike scheme, as represented in Fig. 1(a), with degene-
rate transitions energies ω0 ¼ ωA − ωG ¼ ωS − ωG, whereffiffiffi
2

p jSi ¼ ðj0i1j1i2 þ j1i1j0i2Þ and
ffiffiffi
2

p jAi ¼ ðj0i1j1i2 −
j1i1j0i2Þ are the two maximally entangled Bell states,
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respectively. The goal is to generate steady state entangle-
ment by optically pumping the system in one of these states
with high probability and by using incoherent resources,
which can practically be realized by engineering some
unbalance between the steady state population of jSi
and jAi.
We assume the two qubits to be coupled to two

independent effective baths, each one acting on a collective
degree of freedom. The inverse temperatures of these baths
are denoted as βA and βS, which are allowed to assume
negative values [36]. The dynamics of the open quantum
system is completely described by the master equation [37]
for the density matrix (ℏ ¼ 1 and kB ¼ 1 in the following)

∂tρ ¼ i½ρ; Ĥ0� þ LðρÞ; ð1Þ

where Ĥ0 ¼ ω0ðĉ†1ĉ1 þ ĉ†2ĉ2Þ is the Hamiltonian, and

LðρÞ ¼
X
i¼A;S

�
Γþ
i

2
DĴ†i

ðρÞ þ Γ−
i

2
DĴi

ðρÞ
�

ð2Þ

is the Liouvillian operator in Lindblad form, with
DôðρÞ ¼ 2ôρô† − fô†ô; ρg. We have introduced the collec-
tive operators ĴS ¼ ĉ1 þ ĉ2 and ĴA ¼ ĉ1 − ĉ2, respectively,
where ĉi (ĉ

†
i , i ¼ 1, 2) are destruction (creation) operators

obeying anticommutation rules fĉi; ĉ†jg ¼ δij. We assume a
common pumping rate for the two collective modes, i.e.,
Γþ
i ¼ Γþ for i ¼ A, S, while we will allow for independent

dissipation rates, Γ−
S and Γ−

A, verifying

Γþ

Γ−
S
¼ e−βS ;

Γþ

Γ−
A
¼ e−βA ; ð3Þ

in which the effective temperatures of the baths are given in
units of ω0.
The amount of steady state entanglement that can be

generated is quantified from the degree of nonseparability

of the given steady state ρSS, i.e., the solution of the linear
equation ½ρSS; Ĥ0� ¼ iLðρSSÞ. As an entanglement measure
we hereby use the concurrence [38], an entanglement
monotone defined for bipartite quantum systems as CðρÞ ¼
maxf0; λ1 − λ2 − λ3 − λ4g, where λ2i are the eigenvalues of
the Hermitian matrix ρ~ρ ordered as λ1 ≥ λ2 ≥ λ3 ≥ λ4, and
~ρ ¼ ðσy ⊗ σyÞρ�ðσy ⊗ σyÞ. For maximally entangled pure
states such as, e.g., Bell states, the concurrence is bound to
C½ρ� ¼ 1. For the model above, the steady state concur-
rence can be analytically solved as [39]

CSS ≡ CðρSSÞ ¼ max f0; ðN1 − N2Þ=dg; ð4Þ
with

N1 ¼ jAðS=2 − 1Þj;
N2 ¼ fðS=2þ 1Þ½2S2 þ 2PðS − 2Þ�g1=2;
d ¼ 1þ S2 þ SðP þ 3Þ=2 − P; ð5Þ

in which we defined S¼expðβAÞþexpðβSÞ,A¼ expðβAÞ−
expðβSÞ, and P ¼ expðβA þ βSÞ.
A plot of Eq. (4) is given in Fig. 1(b) as a function of the

two inverse temperatures. As expected, the steady state is
fully separable (CSS ¼ 0) for balanced reservoirs, i.e.,
when βS ≃ βA. In this case, most of the stationary popu-
lation is either in jGi or jEi on average, while the rest is in
an equal mixture of the two Bell states jAi and jSi. On the
other hand, an unbalance in the two thermal reservoirs
allows for driving the system in a nonseparable steady state,
with the population of either jAi or jSi dominating over the
other. The amount of entanglement is limited to the value
C ¼ 1=3 when classical thermal reservoirs at positive
temperatures are assumed (see dashed lines superimposed
to the color scale plot), as also inferred from the analytic
expression above [39]. This limiting value is reached when
the cold bath is at zero temperature while the hot one goes
to infinite temperature. In such a case, the population of the

FIG. 1. (a) Elementary model of a driven-dissipative quantum thermal machine with diamondlike internal level structure and
degenerate symmetric (S) and antisymmetric (A) states; the collective eigenstates are assumed to be connected to two independent
reservoirs, defined through their effective temperatures T S ¼ ω0=βS and T A ¼ ω0=βA, respectively. (b) Steady state concurrence,
Eq. (4), plotted against βA and βS, respectively. White dashed lines mark the thermal region (βA;S ≥ 0); the red dashed curves show the
contour line for the limiting value C ¼ 1=3. (c) Rate of entropy production in steady state, Eq. (6), plotted in the same ðβA; βSÞ plane as
(b) and normalized to ω0 and Γþ.
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Bell states is unbalanced, such that 1=3 of the weight is in
the entangled state coupled to the hot bath, while the rest of
the, i.e., 2=3, is in the ground state jGi. A similar result was
found in alternative models of bipartite quantum systems
coupled to thermal reservoirs [17,19].
Going beyond previous studies, we see that the optical

pumping can be improved by relaxing the conditions of real
thermal reservoirs with positive temperatures. If negative
temperatures are authorized, maximal steady state entangle-
ment is reached when the hot bath is at effective negative
temperature, while the cold bath is at a positive and small
one [Fig. 1(b)]. Then, the system is pumped into the
maximally entangled state coupled to the negative effective
temperature bath with 1=2 stationary probability, with zero
probability in the other, giving the limiting valueCSS ¼ 1=2.
This is a key result of this work: a bipartite quantum system
can be optically pumped into a maximally entangled steady
state by exploiting purely incoherent resources, with the
largest concurrence reaching the limiting value of 0.5 if one
of the two Bell states is coupled to a bath at negative effective
temperature. In the absence of feedback or further purifica-
tion of the steady state [22,42,43], this is the theoretical
limiting value. Notice that the regions with the highest
concurrence are all outside the thermal region, which could
in principle be reached with classic thermal baths. Notice
also that the lower left region, corresponding to both
reservoirs being at negative effective temperature, gives
CSS ¼ 0 due to the largest occupancy of the fully separable
jEi state, i.e., corresponding to the population inversion of
the diamond at large pumping.
Entropy production and irreversibility.—The optically

pumped bipartite system is now analyzed in terms of its
thermodynamic properties. The whole protocol aims at
driving and maintaining a quantum system out of equilib-
rium and, therefore, is irreversible by nature. The degree of
irreversibility is quantified by the rate of steady state
entropy production, _Sirr ¼ ½dSirr=dt�SS. If the reservoirs
are real thermal baths, this rate is classically given by

_Sirr½ρSS� ¼ −βA _QA½ρSS� − βS _QS½ρSS� ≥ 0; ð6Þ

where the steady state heat currents are defined as
_Qi½ρSS� ¼ TrfH0LiðρSSÞg, with LiðρSSÞ (i ¼ A, S) as in
Eq. (2), which verify _QA½ρSS� þ _QS½ρSS� ¼ 0. In this classi-
cal case, Eq. (6) simply corresponds to the increase of
entropy of the isolated system consisting of the two qubits
and the two baths, consistently with the second law.
Stochastic thermodynamics allows us to extend the concept
of entropy production to new regimes where incoherent
resources do not reduce to thermal baths [29–33]. Here,
entropy production is defined at the single realization level,
by comparing the respective probabilities of the realization
in the direct and in some fictitious, reversed protocol. Such
definition verifies the second law (the rate of entropy
production is positive on average), and matches Eq. (6)

if the reservoirs are thermal. Remarkably, based on sto-
chastic thermodynamics it can be shown that the validity of
Eq. (6) still holds in the case of reservoirs at negative
effective temperature [39]. The results are shown in
Fig. 1(c) as a function of βA and βS, displaying a striking
correlation with the concurrence plot: our protocol can be
seen as a machine operating in the steady state regime,
whose ability to generate entanglement is maximized with
the entropy production rate.
Cavity QED-based implementation.—A natural question

is whether the theoretical model in Eq. (2) can be practi-
cally realized in a physical system that is amenable to
experimental implementation. We show here that this is the
case for a quite straightforward cavity QED situation in
which two independent and incoherently pumped qubits
are coupled to a single radiation mode of an electromag-
netic resonator, as schematically represented in Fig. 2(a).
Specifically, we consider a pair of pointlike two-level

FIG. 2. (a) Quantum optical scheme of the full cavity QED
model representing a pair of two-level emitters coupled to the
same lossy cavity mode and incoherently pumped by an external
drive, and the corresponding level scheme of the effective model
after adiabatic elimination of the cavity degree of freedom.
(b) Comparison between the steady state concurrence calculated
numerically for the full quantum optical model, Eq. (8), and
analytically for the effective model, Eq. (2) with parameters
as in Eq. (9), as a function of the cavity dissipation rate for
the ideal case of negligible qubits relaxation rate (γ ¼ 0, at
pumping strength p ¼ 0.0002g). (c) Same comparison for finite γ
and varying pumping strength: p ¼ 0.0002g, p ¼ 0.001g,
p ¼ 0.005g. Here, the qubit-cavity coupling rate is chosen to
be g=ω0 ¼ 0.001.
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systems that are resonantly (ωcav ¼ ω0) coupled to a single-
mode resonator at the same rate g ≪ ω0, such that rotating
wave approximation is justified and their Hamiltonian is a
two-emitters Tavis-Cummings model,

ĤTC ¼
X2
i¼1

ω0ĉ
†
i ĉi þ ωcavâ†âþ

X2
i¼1

gðĉ†i âþ ĉiâ†Þ; ð7Þ

where â (â†) is the destruction (creation) operator of the
single-mode cavity photons. The master equation describ-
ing the driven-dissipative system of Fig. 1(b) is thus
∂tρ ¼ i½ρ; ĤTC� þ LðρÞ, where the full Liouvillian explic-
itly reads

LðρÞ ¼ p
2

X
i¼1;2

Dĉ†i
ðρÞ þ γ

2

X
i¼1;2

DĉiðρÞ þ
κ

2
DâðρÞ; ð8Þ

in which p and γ are the incoherent pumping and relaxation
rates of the two (identical) qubits, and κ describes the
photon emission rate from the cavity. Notice that an
incoherent pumping scheme is realized whenever high-
energy excitations relax to a well-defined ground state
transition at a certain rate, even if the original source of
excitation can be a coherent one (e.g., an off-resonant
laser). The steady state of the full model can be solved
numerically [39]. This model has been previously ana-
lyzed, e.g., in Ref. [35], when it was evidenced that a steady
state subradiant regime exists over a broad range of values
κ=g, under weak pumping conditions p ≪ g. This system
can be effectively described in the collective spin basis by
adiabatically eliminating the cavity mode [34], which is
fully justified for κ=g > 1. In fact, under such conditions
the cavity only acts as an additional dissipation channel in
the reduced two-qubits subspace [35] in which each qubit is
further relaxed at a rate Γ ¼ 4g2=κ in addition to the
intrinsic spontaneous emission at rate γ. Hence, Eq. (8) can
be recast exactly as Eqs. (1) and (2), after straightforward
algebra with the following relations:

Γþ ¼ p=2; Γ−
A ¼ γ=2; Γ−

S ¼ Γþ γ=2: ð9Þ

The effective temperatures result now from combinations
of the physical parameters of the model: βA ¼ log ½γ=px�
and βS ¼ log ½ðγ þ 2ΓÞ=px�.
In the subradiant regime the system is optically pumped

in the dark jAi ¼ j0; 0i state (i.e., the singlet in the jJ;MJi
notation for eigenstates of the total angular momentum),
thus creating an imbalanced population with respect to the
jSi ¼ j1; 0i (triplet) state [35], as schematically represented
in the diamondlike level structure of Fig. 2(a). This is
confirmed by plotting the steady state concurrence of the
two qubits in Figs. 2(b) and 2(c), which is evidently
different from zero only when κ=g falls in the subradiant
sector of the model. There exists an optical pumping range
for which the system reaches its maximal concurrence,

which also depends on γ=g. In particular, the maximal value
is CSS ≃ 0.4 around p=γ ≃ 5 for the case shown in Fig. 2,
but it can be even larger and approaching the CSS ¼ 0.5
limit for smaller values of γ=g (see, e.g., full numerical
results in Ref. [39]). First, in Fig. 2(b) we show the ideal
result for γ ¼ 0, corresponding to the negative effective
temperature reservoir coupled to the dark state, which gives
the limiting value CSS → 0.5 when p=Γ → 0 (in agreement
with the results in Fig. 1); the full model only follows the
effective model for κ=g > 1, i.e., until the adiabatic
elimination of the cavity mode holds. At difference with
the general model of the previous section, here the A-S
symmetry is broken since only the antisymmetric state is
dark and, from Eq. (9), βS > βA. Hence, with reference to
Fig. 1, only the part above the βS ¼ βA diagonal should be
considered when dealing with this cavity QED implemen-
tation. In Fig. 2(c) we show the behavior of the steady state
concurrence for γ ¼ 10−3g, which is usually the case in most
practical realizations of this quantum optical model, e.g., in
solid-state cavity QED. While it is evident that the regime of
nonseparability narrows in κ as p increases, it should also be
noted that for the proper values of κ the thermodynamic limit
is overcome (i.e., CSS > 1=3) as soon as p > γ. The latter
condition corresponds to the onset of negative effective
temperature for the dark state reservoir [39].
Discussion.—We propose and thermodynamically ana-

lyze a new protocol to generate steady state entanglement
of a bipartite quantum system from incoherent resources.
We show that this scheme can be interpreted as a continu-
ous quantum engine whose performances are optimized
when the entropy production rate is maximal. This effect
makes this class of engines very different from classical
engines, whose yield is usually maximized in the reversible
regime. We finally highlight the potential interest of this
result from an experimental point of view: there are
different platforms where these results at the forefront
between quantum optics, quantum information, and quan-
tum thermodynamics could be tested, ranging from semi-
conductor quantum dots spatially and spectrally matched to
photonic nanoresonators [44–46] to superconducting cir-
cuit quantum electrodynamics devices [47–49]. More
quantitative information is provided in Ref. [39].
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