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We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-
varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional
counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect
and magnetic fields on the sub-μG scale. We split a ring-trapped condensate, initially in the mf ¼ 0

hyperfine state, into superpositions of internal mf ¼ �1 states and condensate superflow, which are spin-
orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population
transfer to the mf ¼ �1 states. The counterflow generation protocol is adiabatically deterministic and does
not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can
maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has
the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation
time and so is limited only by the lifetime of the condensate.
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The endeavor to optimally apply matter-wave interfer-
ometry has generated many proposals and prototypes
for ultrasensitive rotational [1–6], gravitational, or inertial
[7–14] and gravity-wave [15–17] detection protocols. In
parallel, optical confinement potentials allow the simulta-
neous trapping of atoms in different magnetic sublevels,
constituting a spinor condensate [18–21]. In addition to
their coherent nature, the ability to precisely manipulate
motional and spin degrees of freedom using optical, radio-
frequency, and magnetic fields makes spinor condensates a
good candidate for the construction of an interferometer.
We focus on a common path interferometric protocol,
applying it to rotational sensing via Sagnac interferometry
(where we note that our general common-path method is
also applicable to zero-area Sagnac interferometry [22,23],
an often discussed alternative to the Michelson geometry
for optical gravity-wave detection [24–27]).
In this Letter, we propose a method of matter-wave

interferometry in which a repulsively interacting spinor
Bose-Einstein condensate (BEC) is split into a superposi-
tional counterflow state [28,29] through the use of topological
vortex imprinting [20,21,30–33], where the texture of an
externally applied time-varying magnetic field (B field) is
embedded in the condensate’s spin and, hence, its phase. In
the counterflow state, each atom is in a superposition of both
spin and superflow, simultaneously moving clockwise and
counterclockwise, while also occupying multiple hyperfine
sublevels. This class of states is also of fundamental interest in
that it yields superfluid-superfluid counterflow where the

complicating effects of density gradients are substantially
reduced [34]. As the spin and angular-momentum degrees of
freedom are linked, they can be said to be spin-orbit coupled,
and we refer to the method as spin-orbit-coupled interfer-
ometry (SOCI). This method is comparable to that proposed
by Halkyard, Jones, and Gardiner [3] and has similarly
maximized classical Fisher information (denoted FC) [35].
The procedure uses experimentally accessible time-varyingB
fields as a “beam splitter” (Fig. 1). The “arms” of the
interferometer are not spatially separate, constituting a
common-path interferometer insensitive to a variety of
perturbing factors due to its intrinsic symmetry.
Advantages of our SOCI method are that (i) our interferom-
eter can maximize FC and so is shown to have the highest
sensitivity achievable in the absence of entanglement;
(ii) the symmetry and common-path geometry precludemany
systematic phase aberrations; (iii) only standard magnetic
fields are required for beam splitting, with no optical phase
imprinting [28,29], mechanical stirring, or weak link [36–38]
required; and (iv) the precision of our interferometer is limited
only by the lifetime of the condensate.
We present our SOCI method analytically in the context

of an idealized measurement and show that it converts an
accumulated phase difference (due to rotation at angular
frequency Ω, for example) between the counterflowing
components into a difference among the populations, ni,
of the spin states. The measurement sensitivity of such a
method can quantified by the classical Fisher information
FC ¼ P

ið∂ΩniÞ2=ni [35]. Using fully 3D numerical
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simulations of the spinor mean field, for experimentally
realistic parameters, we show that our method maximizes
FC in the sense that FC can be made equal to the maximum
quantum Fisher information FQ achievable for uncorrelated
particles [35].
We treat a spin-F condensate as a system of 2F þ 1

coupled BECs, working only in the z-quantized (ZQ)
representation, where all spin states are labeled with
reference to the z axis. The vector-valued order parameter
is Ψ ¼ P

1
j¼−1 Ψjjji, where Fzjji ¼ jjji, and ℏFz=2 is the

z-direction angular-momentum operator in the ZQ basis. To
consider the effect of rotations, we introduce an angular-
momentum term [39,40] characterized by the angular
velocity vector Ω; our full mean-field dynamical equations
are then [20,21]

iℏ
∂
∂tΨj ¼

�
−
ℏ2

2m
∇2 þ V − iℏðr ×ΩÞ · ∇þ gnΨ†Ψ

�
Ψj

þ f½gsF̄ · F − μBgFB · F�Ψgj; ð1Þ
where the local spin vector F̄ has components
F̄α ¼ Σj;kΨ�

kΨjhkjFαjji. Here we have atomic mass m,
Bohr magneton μB, and hyperfine gyromagnetic ratio gF

(¼ −1=2 for 87Rb in the F ¼ 1 manifold). The scattering
terms are the normal interaction strength gn and spin-spin
interaction strength gs [20]. The V ¼ mω2⊥½ðρ − R0Þ2 þ
z2�=2 term describes an optical ring trap [41], where
ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, giving a radial trapping frequency ω⊥

and major radius R0. While we restrict our analysis to this
specific potential, we note that a more general toroidal
potential (with density zero at ρ ¼ 0) could be used to
realize a similar interferometer. Gravity is taken to act in
the z direction and does not alter the symmetry, and so we
do not consider it further. In our numerics, we consider
experimental parameters comparable to those described in
Refs. [42,43]; however, for faster numerics, we take the
radial trapping frequency to be ω⊥ ¼ 2π × 80 Hz, the
major radius of the ring to be R0 ¼ 5a⊥ ¼ 6.02 μm, and
the number of 87Rb atoms to be N ¼ 104.
The idealized behavior of the system can be understood

through the eigenvectors of the B · F operator, in turn
determined by the texture of the magnetic field. Our
fundamental requirement is that the B field should have a
nontrivial topology, such that a curve encircling the origin
has a nonzerowinding number, which is satisfied by either an
anti-Helmholtz or Ioffe-Pritchard (IP) coil configuration.We
consider the geometrically simpler IP configuration, which is
quadrupolar in the x-y plane. The Cartesian components can
then be written using cylindrical coordinates fρ;ϕ; zg as
BIP ¼ (BqðρÞ cosðϕÞ;−BqðρÞ sinðϕÞ; Bz), where the quad-
rupolar fieldBqðρÞ ¼ b0ρ varies linearlywithρ and the z-bias
field is spatially uniform. ForF ¼ 1, inmatrix representation
j1i ¼ ð1; 0; 0ÞT , j0i ¼ ð0; 1; 0ÞT , and j − 1i ¼ ð0; 0; 1ÞT :

B · F ¼

0
BBB@

Bz Bqeiϕ=
ffiffiffi
2

p
0

Bqe−iϕ=
ffiffiffi
2

p
0 Bqeiϕ=

ffiffiffi
2

p

0 Bqe−iϕ=
ffiffiffi
2

p
−Bz

1
CCCA: ð2Þ

The (spatially dependent) eigenvectors of Eq. (2) are

j � Bi ¼ ð½B� Bz�eiϕ;�
ffiffiffi
2

p
Bq; ½B ∓ Bz�e−iϕÞT=2B; ð3Þ

jZi ¼ð−Bqeiϕ;
ffiffiffi
2

p
Bz; Bqe−iϕÞT=

ffiffiffi
2

p
B; ð4Þ

where B ¼ ðB2
q þ B2

zÞ1=2. The j þ Bi and j − Bi eigenvec-
tors denote the strong- and weak-field-seeking states with
eigenvalues�B,while jZi is field insensitivewith eigenvalue
0. Through these eigenvectors, we can see the imprinting
technique of Ref. [30]; varying Bq (via b0) and Bz over time,
the condensate remains in a given eigenvector of B · F but
transfers between the mf states, accumulating l ¼ F ¼ 1

quantum of angular momentum. Some radial dynamics can
occur as the B field evolves, but these analytically separate
out from the behavior described byB · F [30] and so are not
addressed by our analytics. This implication of spin-gauge
symmetry is confirmed by the full 3D numerics.

(a)

(b)

(c)

(d)

FIG. 1. Overview of spin-orbit-coupled interferometry. (a) Sim-
ulation isosurface plots at 0.2 of the peak density for the initial
condition [j0i in (i)] and immediately after beam splitting [j ∓ 1i
in (ii) and (iii), respectively]. The color of the isosurface maps
the phase, showing counterflow. Black curves show B-field
lines. (b) B-field ramping scheme. Yellow (outer) shaded
regions highlight the beam-splitting processes, while blue (inner)
shaded regions show the phase unpinning processes. Numerically
calculated norms ni ¼

R jΨij2dr (c) and overlaps χi;jðtÞ ¼R jΨij2jΨjj2dr (d) of the spinor components in the z-quantized
basis are shown for a δS ¼ π interferometry run ending at time tf.

PHYSICAL REVIEW LETTERS 120, 063201 (2018)

063201-2



To achieve the counterflow state, we must first prepare
our condensate in the j0i spin state with a large z-bias field
jBzj ≫ jBqðR0Þj. This constitutes the jZi state. The j0i
initial state can be achieved through rf pumping a j − 1i
(weak-field-seeking) condensate [44], following a transfer
to an optical trap, where magnetic trapping is no longer
required. With the initial condition fixed in the jZi state, we
obtain the counterflow state by ramping jBzj down to zero
over a period Ts (Fig. 1) splitting the condensate into a
superposition of spin up and spin down [see Eq. (4)]. We
numerically explore two parameter regimes: (i) The quad-
rupolar field is characterized by an initial gradient
b0 ¼ 3.7 G=cm, while the initial z-bias field is set to Bz ¼
50 mG (Fig. 1) (these parameters are consistent with
Ref. [43]); (ii) we increase the field strengths by a factor
of 10 to separate the Zeeman and nonlinear time scales,
producing a smoother response curve (Fig. 2). We select the
ramp-down period Ts ¼ 32 ms (or 3.2 ms for the stronger
B-field numerics) to be 50 times the Larmor precession
time TL ¼ 2πℏ=ðμBgFb0R0Þ ¼ 0.64 ms (0.064 ms for the
stronger B-field numerics), ensuring that the spins follow
the B field adiabatically. The stronger fields are generally
easier to generate experimentally and are easier to vary
adiabatically due to their faster associated time scale,

putting less stringent requirements on the level of field
control. As the atoms in a given spin state have an
associated flow field, the condensate is now in a super-
positional counterflow state. During counterflow, the sys-
tem is still described by the jZi eigenstate, and so if we now
return Bz to its initial value (or any other value of suitably
large magnitude), the entire condensate will return to j0i.
We use this method for recombination in our interferometry
protocol.
With our beam-splitting and recombination protocols

established, we can now consider the impact of a relative
phase shift, consistent with the approach described in
Ref. [3]. Artificially imprinting a relative phase difference
δ between the spin-up and spin-down components after the
split (at some time when Bz ¼ 0), we can rewrite our
counterflow state as a combination of all three eigenstates
of B · F:

jΨi ¼ 1ffiffiffi
2

p ð−eiðϕþδ=2Þ;0; e−iðϕþδ=2ÞÞT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðδÞ

2

r
jZi− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cosðδÞ

2

r �j þBi þ j−Biffiffiffi
2

p
�
:

ð5Þ

Ramping Bz back up effects the recombination, after which
the j � Bi eigenvectors are the j � 1i states, while the jZi
eigenvector is the j0i state. Hence, projecting our final state
onto the zero spin state via the j0ih0j projector, we obtain
an interferometric signal based on the condensate fraction
in the j0i state, i.e., R jΨ0ðtfÞj2dr ¼ ½1þ cosðδÞ�=2, where
tf is the time when our interferometry protocol ends.
The populations of the different spin components can be
observed experimentally by applying a field gradient in the
z direction, resulting in Stern-Gerlach separation.
We now consider prospective interferometry applica-

tions, where Ωz or Bz are nonzero during the interrogation
counterflow period TI . We assume the counterflow state is
well described by Eq. (5), discarding structure and dynam-
ics in the ρ and z directions; this assumption is validated by
the numerical simulation. If we apply the iℏðr ×ΩÞ · ∇
operator to each spin component of the counterflow state
[Eq. (5)], this yields eigenvalues �ℏΩz in the j � 1i
components, respectively, and 0 in the j0i component.
These eigenvalues can be incorporated into the diagonal
elements of Eq. (2), combining the rotational and Zeeman
terms of Eq. (1). The effect of the rotation is simply to
offset the strength of the z-bias field, which is
suppressed (enhanced) as the coordinate system rotates
with (against) the magnetic dipole precession. This gauge
transformation can be expressed as ~Bz→ ~Bzþ ~Ωz, where
~B¼μBgFB=ℏω⊥ and ~Ω ¼ Ω=ω⊥ are dimensionless quan-
tities. Experimentally, ~Bz ≫ ~Bq ≫ ~Ωz is typically achiev-
able (and implicit in considering the rotation to be a “small

FIG. 2. Results of full 3D numerical simulations quantifying
the performance of interferometry. (a) Response of the final norm
in each component, niðtfÞ, to varyingΩz. These curves match our
analytical result. (b)–(d) Comparison of quantum (FQ) and
classical (FC) Fisher information. (b),(d) Readings made near
the response curve turning point Ωz ¼ 0 (yellow shading) have
suppressed sensitivity (FC < FQ). (c) Readings made on linear
segments of the response curve (blue shading) have the maximum
sensitivity possible for uncorrelated states (FC ¼ FQ). In all
cases, we considered N ¼ 104 87Rb atoms, with quadrupolar field
gradient b0 ¼ 37 Gcm−1, initial z-bias field Bz ¼ 500 mG, and
field ramping time Ts ¼ 3.2 ms.
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effect”). Such a transformed system has analogous trans-
formed eigenvectors. Hence, ramping down jBzj → 0, we
are still in the jZi eigenstate of B · F and therefore expect
no accumulation of phase difference between the j � 1i
components. In order to observe a relative phase accumu-
lation, we must have a superpositional counterflow state in
the absence of a quadrupolar field. Carefully ramping down
Bq with Bz ¼ 0 achieves this aim and unpins the phases of
the counterflowing components, but if some small residual
contribution BzR ≠ 0 remains, then the system may return
to j0i over a slow Bq ramp down as dictated by Eq. (4), and
counterflow is lost. To avoid this restorative effect, we must
choose the ramp-down curve such that the Bq switch off is
diabatic in some sense. For example, it could be smoothly
decaying at first and then cut off instantaneously before the
point where Bq≂10BzR or be fully continuous but ramped
over a suitably fast time scale. The key consideration
should be reduction of the radial dynamics and heating
associated with diabatic processes, noting that the smaller
the residual field, the smaller the associated Zeeman
energy, and so the less danger of heating. We also highlight
that this restorative effect requires the residual field to
satisfy BzR ≪ BqðR0Þ (∼1.57 mG for our weak B-field
numerics). This upper bound scales linearly with R0 and b0
and can easily be raised. In the complete absence of
magnetic fields (and, by spin-gauge symmetry, rotations),
the hyperfine states become degenerate. In general, this
leads to undesirable spin flips, which become more
energetically allowable as B → 0. Note that spin-flipping
collisions are suppressed in the superpositional counterflow
state [45]. Another possible source of undesirable spin flips
is stray fields. However, assuming the field can be con-
trolled on the milligauss scale, such processes have long
associated time scales and can be ignored. Finally, we note
that quantum and thermal fluctuations may be another
source of spontaneous spin flips, but such an analysis is
beyond the scope of this Letter. A strategy to avoid these
spin flips would be to purposefully retain a nonzero BzR.
Once the quadrupolar field is absent, the j � 1i compo-

nents can evolve freely and accumulate a Sagnac phase δS
for Ωz ≠ 0 or a Zeeman-energy phase δZ for BzR ≠ 0. The
phase magnitude can be quantified in terms of either the
ring’s enclosed area or the interrogation period TI [3].
Allowing each component to perform the equivalent of one
full circulation around the ring produces a Sagnac phase
δS ¼ 4AΩzm=ℏ [3,4]. The particle velocity around the ring
is given by a vortex velocity field v ¼ ðℏ=mρÞϕ̂, and so
the time for a single particle to fully circumnavigate the
ring (such that ρ ¼ R0) to be TC ¼ 2πR2

0m=ℏ ¼ 2Am=ℏ
(¼ 313 ms for our parameters). The phase accumulated
for an arbitrary interrogation time TI is then δS ¼
ðTI=TCÞ4ΩzAm=ℏ ¼ 2ΩzTI. The same arguments apply
for the Zeeman-energy phase under the substitution
Ωz → ðμB=ℏÞBz. After interrogation, restoring the quad-
rupolar B field projects our phase-shifted wave function

onto the eigenstates of B · F. As phases are accumulated
the populations in the j � Bi, the jZi basis differs upon
restoration of the quadrupolar field [Eq. (5)]. This induces
some radial oscillations as the j � Bi eigenstates are
respectively strong- and weak-field seeking. These oscil-
lations can be seen in the overlap integrals shown in
Fig. 1(d); however, they do not affect the recombination
as the radial dynamics analytically decouple from the
eigenvectors of B · F.
We show the results of numerical simulations of Eq. (1)

(using CUDA [46]) in Figs. 1 and 2. In Fig. 1, we performed
an interferometry procedure with Sagnac phase δS ¼ π,
fixing the interrogation times TI ¼ TC for complete cir-
culation around the ring and employing weak B fields
consistent with Ray et al. [43]. These fields require longer
time scales, allowing us to better see the dynamics.
Figures 1(b), 1(c), and 1(d) display the full time
evolution of the B field, the norms ni ¼

R jΨij2dr of each
component, and the density-density overlap integrals
χi;jðtÞ ¼

R jΨij2jΨjj2dr, respectively. There is a small
difference between n�1 after recombination, as the weak
fields used in these numerics make the Zeeman and
nonlinear time scales comparable, compromising the
dynamics. The result is still commensurate with our
analytical predictions even in this suboptimal regime.
We observe good overlap during the counterflow phase,
verifying that radial dynamics do not affect the inter-
rogation and that our method is a good example of a
common-path interferometer. After restoring the quadru-
polar field, oscillations are evident in the χ−1;þ1 overlap
integral as a result of the condensate now populating the
field-sensitive j � Bi eigenstates. In Fig. 2(a), we show the
response curve obtained by varying Ωz while again holding
constant the interrogation time TI ¼ TC. For these we used
stronger B fields (b0 ¼ 37 Gcm−1 and Bz ¼ 500 mG). The
response curve is smooth and in good quantitative agree-
ment with our prediction [Eq. (5)]. We report that response
curves obtained by varying BzR, for field sensing on the
sub-μG scale, are in good quantitative agreement with those
obtained by varying Ωz. In Figs. 2(b)–2(d), we show
calculations of the classical Fisher information FC ¼P

1
i¼−1ð∂ΩniÞ2=ni and show that for Ωz ≠ 0 it is approx-

imately equal to the quantum Fisher information
FQ ¼ 4l2T2

I , the upper limit achievable for uncorrelated
particles and so the upper limit available to mean-field
treatments [35]. The counterflow quantization is l ¼ F ¼ 1
in our method. This confirms that our SOCI protocol
maximizes FC for an arbitrary preselected read-off time.
For Ω ∼ 0 [Figs. 2(b) and 2(d)], the value of FC is

dominated by the small number count in the j � 1i modes
such that even small deviations from zero are highly
undesirable, as is the case with all two-mode interferom-
eters. Our protocol can be designed to avoid this issue
through the addition of an extra set of quadrupole bars to
the IP coils. Using the secondary bars during recombination
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allows an arbitrary rotation of the quadrupole field about
the z axis, effecting a coordinate transformation equivalent
to a phase shift δ [Eq. (5)]. Such a phase shift could move
the response curve to a more favorable location with
FC ¼ FQ. In this way, any rotation could be measured
with a precision limited only by the lifetime of the
condensate. The sensitivity can be further increased by
using a higher F manifold, increasing l, and increasing the
precision. Note that the equivalency between ~Ωz and ~Bz
requires that care be taken in experimental measurements.
The maximum value of Ωz ¼ 2π × 5.0 Hz used in the
numerics corresponds to Bz ¼ 3.56 μG. As such, it should
be straightforward to make single-shot field measurements
on the sub-μG scale, as large rotations should be absent.
Similarly, a spin-echo technique [47] would allow the
exclusion of Zeeman phases [3].
In conclusion, we present a BEC interferometry protocol

which requires only the careful control of standard B fields
and an optical ring trap. Our protocol gives the greatest
possible degree of access to measurement information for
uncorrelated systems and, through its maximal spatial
overlap, is a good candidate for Heisenberg limited inter-
ferometry [36,48,49]. We have also presented the results of
full 3D multicomponent mean-field calculations of the
Fisher information which demonstrate the robustness of
our approach in the absence of idealizing approximations.
The data presented in this Letter can be found

in Ref. [50].
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