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We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries,
without introducing current algebra or coset space. The Ward identity constrains correlation functions of
the sigma model such that the Adler’s zero is guaranteed for S-matrix elements, and gives rise to a
subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay
constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as
an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar
theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan
representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents
corresponding to the generalized shift symmetry.
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Introduction.—Nonlinear sigma models (nlσm) [1] have
wide-ranging applications in many branches of physics. It
was realized early on that spontaneously broken sym-
metries play a central role in understanding the dynamics of
nlσm. Such a realization was embodied in the current
algebra approach [2], where currents corresponding to
broken symmetry generators and their commutators
allowed for computations of pion scattering amplitudes
and resulted in the celebrated “Adler’s zeros” in the single
emission of soft pions [3]. Modern formulation of nlσm is
based on the coset space construction by Callan, Coleman,
Wess, and Zumino (CCWZ) [4,5], where the Goldstone
bosons parametrize the coset manifold G=H with G being
the spontaneously broken symmetry in the UV and H the
unbroken group in the IR.
Lately there has been a resurgence of efforts in under-

standing the infrared structure of quantum field theories, in
particular in gravity and gauge theories [6]. The classic soft
theorems [7] were rederived using asymptotic symmetries
and the related Ward identities, while the soft massless
particles are interpreted as Goldstone bosons residing at the
future null infinity [8–11].
On the other hand, our understanding of the Goldstone

bosons in nlσm had stayed at the same level as in the 1960s,
until Ref. [12] studied the double soft emission of
Goldstone bosons in the context of scattering amplitudes,

which sparked new efforts in this direction [13–15]. More
recently, Ref. [16] studied the subleading single soft limit
of tree-level amplitudes in a variety of theories exhibiting
Adler’s zeros using the Cachazo-He-Yuan (CHY) repre-
sentation of scattering equations [17–19]. They found in
each case the subleading single soft factor can be inter-
preted as on-shell tree amplitudes of a mysterious extended
theory. Only the CHY representation of tree amplitudes in
the extended theory is given, and little is known regarding
how the extended theory emerges. For nlσm, the extended
theory turns out to be a theory of cubic biadjoint scalars
interacting with the Goldstone bosons.
In this Letter we aim to provide a common thread

through the different perspectives on the infrared dynamics
of Goldstone bosons. We first present a Ward identity
governing the correlation functions of nlσm such that the
Adler’s zero is guaranteed for S-matrix elements. The Ward
identity is derived using nonlinear shift symmetries [20,21],
which makes transparent the infrared universality of the
result, regardless of the underlying coset space. Using the
identity we derive a single soft theorem, beyond the Adler’s
zero, that is valid both at the quantum level and to all orders
in the Goldstone decay constant. For tree-level amplitudes,
we obtain a novel set of Berends-Giele recursion relations,
which leads to the subleading single-soft factor of flavor-
ordered tree amplitudes. In particular, the derivation shed
light on the emergence of the extended cubic biadjoint
scalar theory uncovered using the CHY approach in
Ref. [16].
The Ward identity.—In Refs. [20,21] a new approach to

constructing the effective Lagrangian for nlσm was pro-
posed, without recourse to the current algebra or the coset
construction. It is based on the simple observation that, for
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a spontaneously broken Uð1Þ symmetry, the effective
Lagrangian for the sole Goldstone boson πðxÞ can be
constructed by imposing the shift symmetry:

πðxÞ → πðxÞ þ ϵ; ð1Þ
where ϵ is a constant. The constant shift symmetry enforces
the Adler’s zero condition. For a nontrivial unbroken group
H, there are multiple Goldstone bosons πaðxÞ furnishing a
linear representation of H and the constant shift symmetry
is enlarged to respect both the Adler’s zero condition and
the linearly realized H symmetry. Choosing a basis such
that generators of H, ðTiÞab, are purely imaginary and
antisymmetric, and adopting the bra-ket notation to define
jTiπi ¼ Tijπi, Eq. (1) can be generalized to [20,21]

jπi → jπi þ
X∞
k¼0

akT kjϵi; T ≡ 1

f2
jTiπihπTij; ð2Þ

where ak are numerical constants, jϵi is a constant vector,
and f is the Goldstone decay constant. By imposing the
Adler’s zero condition, an effective Lagrangian for the
Goldstone bosons can be constructed, without specifying
the broken group G in the UV, up to the overall normali-
zation of f. The construction makes it clear that interactions
of Goldstone bosons are universal in the IR and insensitive
to the coset structure G=H. The highly nonlinear nature of
the Goldstone interactions only serves two purposes:
(i) fulfilling the Adler’s zero condition and (ii) linearly
realizing the unbroken groupH. The leading two-derivative
Lagrangian is [20,21]

Lð2Þ ¼ 1

2
hDμπjDμπi; jDμπi ¼

sin
ffiffiffiffi
T

p
ffiffiffiffi
T

p j∂μπi: ð3Þ

Using the universality in Goldstone interactions, it is
possible to derive the generalized nonlinear shift in
Eq. (2) [22],

jπi → jπi þ F1ðT Þjϵi; F1ðT Þ ¼
ffiffiffiffi
T

p
cot

ffiffiffiffi
T

p
; ð4Þ

under which the nlσm Lagrangian is invariant.
It is now straightforward to derive the Ward identity

corresponding Eq. (4) in path integral, by promoting the
global transformation into a local one [23]: jϵi → jϵðxÞi,
which amounts to a change of variable in evaluating the
path integral and leads to the Ward identity:

i∂μh0jf½F2ðT Þ�ab∂μπbgðxÞ
Yn
i¼1

πaiðxiÞj0i

¼
Xn
r¼1

Δrh0jπa1ðx1Þ � � � f½F1ðT Þ�ðxrÞgara � � � πanðxnÞj0i;

ð5Þ

where ∂μ ¼ ∂=∂xμ and

Δr ¼ δð4Þðx − xrÞ; F2ðT Þ ¼ sin
ffiffiffiffi
T

p
cos

ffiffiffiffi
T

p
ffiffiffiffi
T

p : ð6Þ

Since we have not invoked any specific coset structure,
Eq. (5) is universal. It is worth reiterating that we have only
invoked the Adler’s zero condition and the linearly realized
unbroken symmetry H. This is in contrast with the usual
vector and axial Ward identities considered in current
algebra, which assumes the existence of broken symmetry
generators as well as the associated current commutators.
A Berends-Giele relation.—The semi-on-shell amplitude

is defined as

Ja1���an;aðp1;…; pnÞ ¼ h0jπað0Þjπa1ðp1Þ � � � πanðpnÞi: ð7Þ

Such objects were considered first by Berends and Giele in
Ref. [24] as building blocks for computing S-matrix ele-
ments in Yang-Mills theories. In SUðNÞ nlσm they were
studied in Ref. [13] and a Berends-Giele type recursion
relation was proposed using Feynman vertices from an
effective Lagrangian.
Equation (7) can be obtained from a (nþ 1)-point corre-

lation function via the Lehmann-Symanzik-Zimmermann
(LSZ) reduction on n of the Goldstone fields [23]. We define

LI≡
�

iffiffiffiffi
Z

p
�

n
Z

d4xe−iq·x
Yn
i¼1

Z
d4xie−ipi·xi□i; ð8Þ

and perform the LSZ reduction on the nGoldstone bosons by
taking the on-shell limit p2

i → 0, i ¼ 1;…; n. We have also
performed the Fourier transform with respect to q in the
above, so that q ¼ −

P
n
i¼1 pi after the integration. In doing

so, observe that the right-hand side (RHS) of Eq. (5) contains
only (n − 1) single particle poles and, therefore, vanishes. The
left-hand side (LHS) can be expanded in a power series in
1=f2 using F2ðxÞ ¼

P
kð−4Þkxk=ð2kþ 1Þ!, the first of

which is exactly

lim
p2
1
→0

� � � lim
p2
n→0

LI∂μ

�
0j∂μπaðxÞ

Yn
i¼1

πaiðxiÞj0
�

¼ −q2Ja1���an;aðp1;…; pnÞ; ð9Þ

while the higher order terms are matrix elements of the form
h0j ~Oa

kðqÞjπa1ðp1Þ � � � πanðpnÞi, where

~Oa
kðqÞ ¼

Z
d4xe−iq·x∂μf½T kðxÞ�ab∂μπbðxÞg: ð10Þ

The Ward identity now turns into

q2Ja1���an;aðp1;…; pnÞ

¼
X∞
k¼1

ð−4Þk
ð2kþ 1Þ! h0j

~Oa
kðqÞjπa1ðp1Þ � � � πanðpnÞi; ð11Þ
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which is valid at the quantum level. Since ~Oa
kðqÞ is propor-

tional to qμ, the Adler’s zero is manifest when qμ → 0.
At the classical level, Eq. (11) can be turned into a

recursion relation among tree-level semi-on-shell ampli-
tudes. Let us define a (2kþ 1)-point tree vertex from ~Oa

k ,

Va1���a2kþ1;aðp1;…; p2kþ1Þ

¼ −ið−4Þk
ð2kþ 1Þ!f2k

X
σ

Ca1���a2kþ1;a
σ q · pσð2kþ1Þ; ð12Þ

where σ is a permutation of f1; 2;…; 2kþ 1g and

Ca1���a2kþ1;a
σ ≡ Ti1

aaσð1ÞT
i1
aσð2Þb1T

i2
b1aσð3ÞT

i2
aσð4Þb2 � � �

× Tik
bn−1aσð2k−1ÞT

ik
aσð2kÞaσð2kþ1Þ : ð13Þ

Then the Berends-Giele recursion relation is obtained from
Eq. (11) by connecting the vertex in Eq. (12) with either an
external leg or the off-shell leg of a sub-semi-on-shell
amplitude, whose on-shell legs are a subset of fp1;…; png.
In the end we arrive at

q2Ja1���an;aðp1;…; pnÞ

¼ i
X½n=2�
k¼1

X
fdlg

Vb1���b2kþ1;aðqdl;1 ;…; qdl;2kþ1Þ

×
Y2kþ1

i¼1

J
a
dl;i
1

a
dl;i
2

���;biðpdl;i
1
; pdl;i

2
; � � �Þ: ð14Þ

Here dl ¼ fdl;ig is a way to divide f1; 2;…; ng into 2kþ
1 disjoint, nonordered subsets. The jth element of dl;i is
denoted by dl;ij and qdl;i ¼

P
jpdl;ij

.

Semi-on-shell amplitudes in nlσm are not invariant under
field redefinitions and depend on the particular parameter-
ization employed to write down the Lagrangian. It is then
interesting to highlight the difference between Eq. (14)
from that obtained using Feynman diagrams in Ref. [13].
The vertex in Eq. (14) arises from the operator insertion of
~Oa
kðqÞ, which carries momentum injection of qμ. In fact, as

we will see, the cubic interaction of the extended biadjoint
scalar is given by the matrix element of ~Oa

1ð0Þ, which is a
three-point vertex. In addition, the explicit Adler’s zero in
the limit qμ → 0 in Eq. (12) greatly facilitates the calcu-
lation of the subleading single soft limit of the nlσm, which
we turn to next.
The subleading single soft limit.—On-shell amplitudes

are further obtained from the semi-on-shell amplitudes by

Ma1���anþ1 ¼ lim
q2→0

−
1ffiffiffiffi
Z

p q2Ja1���an;anþ1 ; ð15Þ

where q ¼ −ðp1 þ � � � þ pnÞ≡ pnþ1 is the momentum of
the (nþ 1)th leg. Using Eq. (11) it is simple to derive the
single soft limit in pnþ1 → τpnþ1, τ → 0:

Ma1���anþ1 →
1ffiffiffiffi
Z

p
X∞
k¼1

−ð−4Þk
ð2kþ1Þ!

×τh0j
Z

d4x½T kðxÞ�abipnþ1 ·∂πbðxÞjπa1 �� �πani;
ð16Þ

This is the subleading single soft theorem in nlσm, valid at
the quantum level. Notice there is no momentum injection
at this order in τ and the operator behaves just like a
“normal” Feynman vertex, which hints at interpreting the
matrix element as scattering amplitudes.
Reference [16] studied the flavor-ordered tree ampli-

tudes, which we now proceed to consider. Recall that we
chose the generator Ti of the unbroken group H to be
purely imaginary and antisymmetric. The equivalence of
our approach with the coset space construction, which
introduces broken symmetry generators Xa, is readily
established upon the identification [20,21]

ðTiÞab ¼ −ifiab; ð17Þ

where ½Ti; Xa� ¼ ifiabXb and ½Xa; Xb� ¼ ifabiTi for sym-
metric cosets. Using the normalization TrðXaXbÞ ¼ δab

one can show that the color factor in Eq. (13) becomes

Ca1���a2kþ1;a
σ ¼Trð½½�� �½½Xa;Xaσð1Þ �;Xaσð2Þ �; � ���;Xaσð2kÞ �Xaσð2kþ1Þ Þ:

ð18Þ

A flavor-ordered vertex Vð1; 2;…; 2kþ 1Þ from Eq. (12)
can now be defined

Va1���a2kþ1;aðp1;…; p2kþ1Þ
≡X

σ

TrðXaXaσð1Þ � � �Xaσð2kþ1Þ ÞVσðp1;…; p2kþ1Þ: ð19Þ

Furthermore, using the notation Vð1;…; 2kþ 1Þ ¼
Vσðp1;…; p2kþ1Þ for σ ¼ identity,

Vð1; 2;…; 2kþ 1Þ

¼ −ið−4Þk
ð2kþ 1Þ!f2k

X2k
j¼0

�
2k

j

�
ð−1Þjq · pjþ1; ð20Þ

where q is the momentum injection at the vertex.
Define the flavor-ordered semi-on-shell amplitude

Jσðp1;…; pnÞ and Jð1;…; nÞ similarly, Eq. (14) gives

q2Jð1; 2;…; nÞ ¼ i
X½n=2�
k¼1

X
flmg

Vðql1 ;…; ql2kþ1
Þ

×
Y2kþ1

m¼1

Jðlm−1 þ 1;…; lmÞ; ð21Þ

PHYSICAL REVIEW LETTERS 120, 061601 (2018)

061601-3



where lm is a splitting of the ordered set f1; 2;…; ng
into 2kþ 1 nonempty ordered subsets flm−1 þ 1; lm−1 þ
2;…; lmg (here l0 ¼ 1 and l2kþ1 ¼ n). Moreover,
qlm ¼ Plm

i¼lm−1þ1 pi. Eq. (21) has a clear diagrammatic
interpretation: Jð1; 2;…; nÞ is consisted of subamplitudes
connecting to Vðql1 ;…; ql2kþ1

Þ.
The LHS of Eq. (21) can be turned into an on-shell

amplitude by taking qμ ¼ −
P

n
i¼1 p

μ
i on-shell. Together

with momentum conservation, the flavor-ordered vertex in
Eq. (20) can be written as

Vð1; 2;…; 2kþ 1Þ

¼ −ið−4Þk
ð2kþ 1Þ!f2k

X2k−1
j¼1

��
2k

j

�
ð−1Þj − 1

�
q · pjþ1; ð22Þ

and Eq. (21) becomes

Mð1; 2;…; nþ 1Þ

¼
X½n=2�
k¼1

−ð−4Þk
ð2kþ 1Þ!f2k

×
X
flmg

X2k−1
j¼1

��
2k

j

�
ð−1Þj − 1

�
pnþ1 · qljþ1

×
Y2kþ1

m¼1

Jðlm−1 þ 1;…; lmÞ; ð23Þ

where pnþ1 ¼ q ¼ −
P

n
i¼1 pi.

At this stage Eq. (23) is exact, having only taken the on-
shell limit p2

nþ1 ¼ 0. If we further take the soft limit,
pnþ1 → τpnþ1, τ → 0, the RHS of Eq. (23) starts at linear
order in τ, in accordance with the Adler’s zero condition.
Notice that at OðτÞ, one can simply drop the τ dependence
in the subamplitudes, by requiring

P
n
i¼1 pi ¼ 0. This is the

next-to-leading order single soft factor of flavor-ordered
tree amplitudes in nlσm.
The CHY interpretation.—In Ref. [16] the subleading

single soft limit of flavor-ordered tree amplitudes in nlσm is
studied using the CHY formulation of scattering equations
[17–19]. The single soft limit is interpreted as relating the
(nþ 1)-point amplitudes in nlσm to the n-point amplitudes
of a related, but different theory containing cubic inter-
actions of biadjoint scalars. Specifically, at OðτÞ, the
proposal is

MðInþ1Þ ¼ τ
Xn−1
i¼2

snþ1;iMnlσm⊕ϕ3ðInj1; n; iÞ; ð24Þ

where sij ¼ 2pi · pj. MðInþ1Þ is the (nþ 1)-point flavor-
ordered amplitude in nlσm with the ordering Inþ1 ¼
f1; 2;…; nþ 1g and Mnlσm⊕ϕ3ðInj1; n; iÞ denotes the
n-point amplitudes of nlσm interacting with a cubic

biadjoint scalar, where f1; n; ig is the flavor-ordering of
the second adjoint index in the biadjoint scalar. Little is
known about the nature of this “extended theory,” and only
the CHY representation of the flavor-ordered on-shell
amplitudes is given.
Our results in the previous sections shed light on the

interactions, in particular the Feynman vertices, of the
extended theory. First of all, the emergence of a cubic scalar
interaction is evident already in Eq. (16). Using the 4-point
amplitude as an example and set p4 ¼ q as the soft
momentum, the full tree amplitude from Eq. (16) is

Ma1a2a3a4

¼ τ
2

3f2
ðTiÞa4rðTiÞsbh0j

Z
d4xπrπsiq · ∂πbjπa1πa2πa3i

¼ τ
1

f2
X
σ

TrðXa4Xaσð1ÞXaσð2ÞXaσð3Þ Þs4;σð2Þ; ð25Þ

where we have used the on-shell condition, q2 ¼ 0, and
momentum conservation, q ¼ −ðp1 þ p2 þ p3Þ. Setting
the decay constant f ¼ 1, and extracting the flavor-ordered
single-soft factor using the CHY proposal in Eq. (24), we
obtain the cubic interaction

Mnlσm⊕ϕ3ð123j132Þ ¼ −1; ð26Þ

which agrees with the CHY representation of three-point
amplitude given in Ref. [16]. Tracing back the appearance
of the cubic interaction we see it is rooted in the order 1=f2

term in Eq. (5), which is a cubic operator.
To study Eq. (23) in the context of the CHY proposal,

which only gives the flavor-ordered tree amplitudes but not
Feynman rules, we make the following observations
regarding the flavor-ordered Feynman rule of the biadjoint
scalar ϕ: (i) no vertices exist with only one ϕ, (ii) a flavor-
ordered m-point vertex containing two ϕ’s has the same
flavor-ordered Feynman rule as in the nlσm, and (iii) a
(2kþ 1)-point vertex involving three ϕ’s has the following
flavor-ordered Feynman rule

Vnlσm⊕ϕ3ð1; 2;…; j;…; 2kþ 1j1; 2kþ 1; jÞ

¼ 1

2

−ið−4Þk
ð2kþ 1Þ!

��
2k

j − 1

�
ð−1Þj−1 − 1

�
; ð27Þ

where p1, pj, and p2kþ1 are the momenta of ϕ’s. Similar to
the 3-point vertex in Eq. (26), the (2kþ 1)-point vertex can
be seen as emerging from the order 1=f2k term in the Ward
identity in Eq. (5).
Using these Feynman rules, it is possible to show that the

coefficients of snþ1;i in Eq. (23) are precisely the ampli-
tudes in nlσm ⊕ ϕ3, in accordance with the CHY proposal
in Eq. (24). In other words, these coefficients have
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consistent factorization and can be interpreted as scattering
amplitudes [22].
Conclusion.—In this work we have explored conse-

quences of nonlinear shift symmetries in nlσm and pre-
sented the associated Ward identity, which allowed us to
study various aspects of scattering amplitudes in nlσm. In
particular, we derived a next-to-leading order single soft
theorem and studied the subleading single soft factor for
flavor-ordered tree amplitudes, which provided a new
perspective on the mysterious extended theory of cubic
biadjoint scalars interacting with the Goldstone bosons.
There are many future directions. One example is

whether the interpretation of an extended theory can be
applied to the full scattering amplitudes of nlσm, instead of
just the flavor-ordered amplitudes. Naively there is an
obstacle in doing so, since the LHS of Eq. (24) carries one
flavor index, while the biadjoint amplitude in the RHS
carries two flavor indices. Another possibility is to extend
the Ward identity to shift symmetries involving spacetime,
and understand their soft theorems and the associated
extended theories. Additionally, there is a new formulation
of nlσm which makes the flavor-kinematic duality trans-
parent [25], in which the subleading soft theorems and the
cubic biadjoint scalars can be accommodated. It would be
interesting to understand the connection with the shift
symmetry perspective.
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