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We consider the dynamics of a system of free fermions on a 1D lattice in the presence of a defect moving at
constant velocity. The defect has the form of a localized time-dependent variation of the chemical potential
and induces at long times a nonequilibrium steady state (NESS), which spreads around the defect.We present
a general formulation that allows recasting the time-dependent protocol in a scattering problem on a static
potential.We obtain a complete characterization of the NESS. In particular, we show a strong dependence on
the defect velocity and the existence of a sharp threshold when such velocity exceeds the speed of sound.
Beyond this value, the NESS is not produced and, remarkably, the defect travels without significantly
perturbing the system.We present an exact solution for a δ-like defect traveling with an arbitrary velocity and
we develop a semiclassical approximation that provides accurate results for smooth defects.
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Recent experimental advances in the context of cold
atoms [1–16] converted the study of out-of-equilibrium
closed quantum systems from an academic debate to a
concrete and extremely active research topic. In this
context, the simplest protocol is known as quantum quench
[17], where the system is brought out of equilibrium by a
sudden change of a coupling constant. Despite the unitary
time evolution, in the thermodynamic limit, local observ-
ables reach a time-independent expectation value and the
system locally equilibrates [18]. One-dimensional systems
have played a special role because of the presence of
special techniques, such as conformal field theory [19]
and integrability [20,21]. In particular, in homogeneous
quenches a global parameter is modified and several studies
with a number of integrable models and initial conditions
[22–31] (see also Ref. [32] for a review) have confirmed the
validity of the generalized Gibbs ensemble (GGE) [33].
The GGE hypothesis prescribes that the steady state
assumes a thermal form, but with an extended set of
temperatures, conjugated to each (quasi-) local conserved
quantity present in the model [33,34]. The value of such
temperatures is then fixed by the initial expectation value of
conserved quantities [35–49].
A more complex scenario emerges for inhomogeneous

quenches, where, because of an asymmetry in the initial
state or in the final Hamiltonian, translational invariance is
explicitly broken. The simplest case is the one in which a
localized defect perturbs an otherwise homogeneous sys-
tem. As the spreading of correlations is bounded by a
maximal speed of sound vs, this defect cannot affect
immediately the whole (thermodynamically large) system
[50,51]. In the presence of ballistic dynamics, at late times t
and large distance x from the defect, the system reaches a
locally quasistationary state (LQSS) [52], whose properties

depend only on the ray ζ ¼ x/t inside the light cone
jζj < vs. The infinite time limit at finite distance (i.e.,
ζ ¼ 0) corresponds instead to the nonequilibrium steady
state (NESS). Our present understanding of LQSS is based
on numerical studies [53–55], free models [56–68], CFT
[69–74], and only recently on truly interacting integrable
models [52,75–79]. In particular, the hydrodynamic
description [52,78–80] has led to exact results with possible
applications to several contexts [81–86].
In this Letter, we consider instead a moving defect. This

setting offers an additional parameter to control the sta-
tionary state, particularly interesting in those systems
whose excitations possess a maximum velocity. Moving
impurities have already been experimentally probed, in
particular in Ref. [15], the case of a Tonks Girardeau gas
[87] (intimately linked to the free fermion case here
analyzed) was considered. While several works have
considered moving impurities in several contexts [88–
98], the long-time out-of-equilibrium dynamics has never
been addressed so far. In particular, does the system still
react forming a LQSS? How the LQSS changes for
different velocities of the defect? We explore these ques-
tions in the prototypical case of hopping fermions on a
lattice, which is amenable to a full analytical treatment still
retaining a rich phenomenology. At time t > 0, the dynam-
ics is governed by the following time-dependent
Hamiltonian:

H ¼
X
j

−
1

2
ðd†jdjþ1 þ d†jþ1djÞ þ Vðj − vtÞd†jdj; ð1Þ

where dj are the fermionic operators fdj; d†l g ¼ δj;l. With
the current choice of couplings, the unperturbed system has
a sound velocity vs ¼ 1. This lattice model can be mapped
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in the XX spin chain [99–101], where the defect plays the
role of a traveling magnetic impurity. The system is
assumed to be initially in the unperturbed ground state
(V ¼ 0) at fixed particle number (the finite temperature
case being a trivial generalization). Here, the impurity is
suddenly created and put in motion; other similar settings
(e.g., the motion of a preexisting defect) would lead to the
same late time physics. We show the emergence of a
moving LQSS, whose rays refer to the instantaneous
position of the defect. The amplitude of the LQSS is
showed to be suppressed when the velocity of the defect is
increased and the formation of a LQSS becomes impossible
for a supersonic impurity. We fully determine the exact
LQSS generated by a δ-like perturbation and provide a
semiclassical expression of the LQSS, valid for smooth
defects. Even though the model we are considering is free,
the emergent LQSS displays absolutely nontrivial features
understood thanks to its exact description, while approxi-
mated methods commonly used could lead to misleading
conclusions (see the Supplemental Material [102]for dis-
cussion of the Luttinger-Liquid approximation [103,104]).
The LQSS as a scattering problem.—The effect of the

moving impurity is best understood in a pictorial repre-
sentation where the initial state can be regarded as a gas of
excitations. The excitations move freely in the space until
the defect is met, then a scattering event takes place and the
excitation continues in a free motion, with a different
momentum. The nontrivial LQSS is due to the scattered
particles, spreading ballistically from the defect. Thereafter,
we make this argument rigorous. The initial state is a filled
Fermi sea with Gaussian correlations. As the postquench
Hamiltonian is quadratic, all the local observables at any
time are fixed by the two-point correlators via the Wick
theorem. Thereafter, we focus only on the case v > 0.
Changing the reference frame to set the defect at rest would
remove the explicit time dependence of the problem, but
such a program is foiled by the discreteness of the lattice.
This difficulty can be circumvented through a map to a
continuous fermionic model fcx; c†yg ¼ δðx − yÞ with
Hamiltonian

Hc ¼
Z

dx −
1

2
ðc†xcxþ1 þ c†xþ1cxÞ þ Vðx − vtÞc†xcx: ð2Þ

From this model all the discrete correlation functions are
exactly recovered. Indeed, Hc only couples a coordinate x
with xþ n, n ∈ Z. On this sublattice, continuous and
discrete (normal ordered) correlation functions satisfy the
same equation of motion; thus, their solution is the same
provided consistent initial conditions hc†jclit¼0 ¼ hd†jdlit¼0

have been chosen. We can thus employ Eq. (2) to study the
dynamics of the system and later restrict ourselves to
integer positions. This approach leaves us the freedom of
arbitrarily choosing the correlator at noninteger values; a
convenient choice is to assume the initial state in the

momentum space is described by the same Fermi sea of the
discrete model. As x is a continuous coordinate, we can
now introduce a reference frame cx ¼ c̃x−vt, where the
defect is at rest. In terms of this new field, the equation of
motion can be derived from the time-independent
Hamiltonian

H̃c¼
Z

dxivc̃†x∂xc̃x−
1

2
ðc̃†xc̃xþ1þ c̃†xþ1c̃xÞþVðxÞc̃†xc̃x: ð3Þ

Clearly, the dynamics induced by Eq. (3) depend on the
details of VðxÞ. However, being that the defect is localized,
we can use scattering theory. We introduce the mode
operators ηk ¼

R
dxψ�

kðxÞc̃x, where the ψkðxÞ is the nor-
malized wave function satisfying the Lippmann-Schwinger
equation [105]. In other words, far away from the defect, it
assumes the simple form of a scattering problem [106],

ψkðxÞ¼θ(−xvðkÞ) e
ikxffiffiffiffiffiffi
2π

p þ
X
kn

Sk→knθ(xvðknÞ)
eiknxffiffiffiffiffiffi
2π

p ; ð4Þ

where the incoming wave is expanded into outgoing
waves weighted with the scattering amplitudes Sk→kn .
The wave vectors kn are obtained via energy conservation
EðkÞ ¼ EðknÞ, with EðkÞ ¼ − cosðkÞ − vk the single-
particle energy in the defect reference frame and vðkÞ ¼
dEðkÞ/dk its group velocity. Corrections to Eq. (4) vanish
exponentially in the distance and the scattering amplitude
takes the form

Sk→kn ¼ δk;kn − 2iπjvðknÞj−1hknjV̂jψki; ð5Þ

where we introduced a bra-ket notation with hxjki ¼
eikx/

ffiffiffiffiffiffi
2π

p
and V̂ðx0Þjxi ¼ Vðx0Þδðx − x0Þjxi. The unitarity

of the Lippmann-Schwinger equation permits us to derive
an exact sum rule whose explicit derivation is left to
Ref. [102]. The initial two point correlator is diagonal in
momentum space; thus, we are ultimately led to consider
the time evolution of plane waves fkðx; tÞ ¼ hxje−iHtjki. In
terms of the eigenbasis jψqi is

fkðx; tÞ ¼
ffiffiffiffiffiffi
2π

p Z
dqe−iEðqÞtψqðxÞhψqjki: ð6Þ

The large time behavior of fk is readily extracted using
Eq. (4) together with the aforementioned sum rule for S, as
the corrections to the asymptotic approximation (4) are
ineffective in the LQSS scaling limit [102]. We can then
obtain the LQSS two-point correlator in the form of a ray-
dependent GGE with an excitation density ρζðkÞ, being the
ensemble Gaussian and (locally) diagonal in the momen-
tum space [107–110]
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hc̃†xc̃yit ¼
Z

π

−π

dk
2π

ρζðkÞeikðy−xÞ

¼
Z

kf

−kf

dk
2π

eikðy−xÞ½1 − θ(ζvðkÞ)θ(jvðkÞj − jζj)�

þ
X
kn

jSk→kn j2θ(ζvðknÞ)θ(jvðknÞj − jζj)eiknðy−xÞ:

ð7Þ

As the two point correlator is a decaying function in the
relative distance, in the large time limit, one must set
x/t ∼ y/t ∼ ζ. Equation (7) is easily interpreted: when a
particle of momentum k collides with the defect, it can
scatter in several channels kn with amplitudes Sk→kn . This
produces a hole in the old momentum and a flux of particles
with the new momenta: these spread ballistically at their
own velocity vðknÞ leading to the ray dependence on ζ. In
Fig. 1, we plot the space-time profile of the fermion density
for a δ-like defect, whose detailed analysis will be con-
sidered later. With no further information on S, we can
discuss the behavior of the LQSS in terms of v analyzing
the scattering channels, identified by EðknÞ ¼ EðkÞ. For
generic v, several channels are open (a divergent number
letting v → 0) and they diminish increasing v until, for a
supersonic defect, the excitations are unavoidably purely
transmitted. In this case, the sum rule obeyed by S forces
jSk→kj ¼ 1 [102](simply interpreted as particle conserva-
tion). Therefore, in the supersonic regime, the LQSS can
never be produced (see also Fig. 1). Note that the LQSS (7)
emerges at late times and large distances from the defect,
when Eq. (4) holds: despite the absence of LQSS, a
supersonic defect still gives nontrivial effects localized
on the impurity. We will further analyze this behavior
within the semiclassical approximation.
An exactly solvable case.—We now consider an example

of defect for which the LQSS can be exactly determined,
i.e., the limit of an extremely narrow defect VðxÞ ¼ cδðxÞ.

In the discrete model (1) the Dirac-δ is ill defined when
v ¼ 0. However, this is not the case for a defect in motion
v ≠ 0: the δ-defect represents an impulsive kick traveling
along the lattice and leads to well-defined equations of
motion. The detailed calculations can be found in the
Supplemental Material [102], here we simply report the
result. Referring to Eq. (5), we have

2πhknjVjψki¼−
�X

km

1

2ijvðkmÞj
−

1

2v
cot

�
c
2v

�
þIðkÞ

�
−1
:

ð8Þ
Above, IðkÞ ¼ P

R ðdq/2πÞ½EðkÞ − EðqÞ�−1, where the
principal value prescription in integrating the singular
points is assumed. In Fig. 2 the exact solution for the
fermion density is tested against numerical simulations.
Numerical data show persistent oscillations due to the
interference of the various scattering channels. These
oscillations decay far away from the defect and are there-
fore inessential in the LQSS scaling limit, but are never-
theless captured by scattering theory (see Ref. [102]). The
nontrivial density profile is only one of the manifestations
of the LQSS, being the complicated structure of the
underlying scattering best appreciated in the excitation
density propagating from the defect (Fig. 3).
The semiclassical approximation.—For general poten-

tial, determining the scattering amplitudes requires some
approximation schemes. Here, we develop a semiclassical
analysis in which the scattering interpretation is most easily
displayed. Our derivation is based on the Wigner distri-
bution [111–113]. Semiclassical approaches are commonly
found in literature [114–118] (see also Refs. [119–122] for
quantum corrections) even though, to the best of our
knowledge, the problem at hand has never been addressed.
Consider the two-point correlator Ctðx; sÞ ¼ hc̃†xþs/2c̃x−s/2it,
under the assumption of (i) weak dependence with respect
to the x coordinate, and (ii) fast decay of Ctðx; sÞ as a

FIG. 1. Fermion density generated by a δ-like defect
[VðxÞ ¼ cδðxÞ, c ¼ 0.5] moving at v ¼ 0.3 (top) and v ¼ 1.5
(bottom). The defect is initially placed at zero and it moves along
the line dashed in red. In the subsonic case the constant values
along the rays indicate the realization of a LQSS, which is instead
absent in the supersonic regime.

FIG. 2. The numeric fermionic density hd†jdji with j¼ðvþζÞt
as a function of ζ at three different times is tested against the
analytic LQSS for a δ-like defect VðxÞ ¼ cδðxÞ with c ¼ 0.5 and
velocity v ¼ 0.3. The density is fixed by kf ¼ π/3. The oscil-
lations mentioned in the main text are smeared out by averaging
on neighboring sites.
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function of s, on a length scale much smaller than the
length on which the defect varies, we can approximate the
equation of motion of the correlator as [123]

i∂tCtðx; sÞ ¼
1

2
∂x½Ctðx; sþ 1Þ − Ctðx; s − 1Þ�

− s∂xVðxÞCtðx; sÞ þ iv∂xCtðx; sÞ þ � � � ð9Þ
Higher derivatives of the correlators and of the defect are
neglected. Being that the initial state is homogeneous, this
approximation is verified for a smooth potential VðxÞ. In
terms of the Wigner function ρtðx; kÞ defined as

ρtðx; kÞ ¼
Z

∞

−∞
dseiksCtðx; sÞ; ð10Þ

these apparently complicated equations reduce to a
classical Liouville equation

∂tρtþfHcl;ρtgk;x¼0; Hcl¼−cosðkÞ−vkþVðxÞ: ð11Þ

Above, f…gk;x indicates the standard Poisson bracket
and Hcl is the classical Hamiltonian. In the semiclassical
limit, ρt evolves as the density distribution of particles
subjected to the classical equations of motion ̇x ¼ vðkÞ,
̇k ¼ −∂xVðxÞ. The precise solution xðtÞ, kðtÞ of these
equations depends on the details of VðxÞ, but the trajecto-
ries kðxÞ of the particles can be easily computed combining
the conservation of the classical energy and the determi-
nation of the turning points, i.e., those points where
dx/dt ¼ 0 (see Ref. [102]). In the semiclassical language,
computing the LQSS is reduced to simple classical scatter-
ing processes: whether a particle is reflected or transmitted
by the defect is simply determined reconstructing the
trajectories. The case of a supersonic defect is remarkably
simple, since the equation of motion does not have turning
points. In this case we readily obtain

lim
t→∞

Ctðx; sÞ ¼
Z

kf

−kf

dk
2π

���� vðkÞ
vðqk;xÞ

����e−iqk;xs; ð12Þ

valid also in proximity of the defect (within the semi-
classical approximation). Above, qk;x is determined by
energy conservation

− cosðqk;xÞ − vqk;x þ VðxÞ ¼ − cosðkÞ − vk; ð13Þ

which has a unique solution for a supersonic v. The
semiclassical results and the numerics are compared in
Fig. 4, further details about the semiclassical approximation
are left to the Supplemental Material [102].
Conclusions and outlook.—We analyzed a local quench

where the defect is moving at constant velocity in a system
of hopping fermions on a lattice. In particular, we focused
on the emergence of a locally quasistationary state and we
studied the dependence of the latter in terms of the velocity
of the defect. With general arguments, we showed the
impossibility of a LQSS formation for supersonic defects.
We provided exact results for a δ-like defect and a semi-
classical analysis for general shapes. We are confident that
our framework can be studied in forthcoming cold-atoms
experiments, as in Ref. [15], a very similar setting was
realized. The moving defect would then be an intriguing
way to induce nonequilibrium dynamics and to probe the
scattering properties of quasiparticle excitations.

FIG. 3. Analytic prediction for the excitation density profile
propagating on the left (left panel) and on the right (right panel) of
a δ-like defect. The dashed red line is the initial Fermi sea, the
black line the spreading excitation whose integral (shaded area)
equals the spatial fermionic density, which jumps around the
defect (see Fig. 2). The same parameters of Fig. 2 are used.

FIG. 4. The numerical fermionic density is tested against the
semiclassical LQSS for a Gaussian shaped repulsive potential
VðxÞ ¼ e−σx

2

with σ ¼ 0.04, kf ¼ π/2. Top: subsonic defect
(v ¼ 0.3) and t ¼ 636. The defect is placed where the disconti-
nuity occurs and a LQSS is produced. Bottom: supersonic defect
(v ¼ 1.5, t ¼ 388) and placed in correspondence with the right-
most peak: the LQSS is indeed absent and the semiclassical
prediction captures the density profile on the defect (inset). The
corrections to the analytic prediction are a combined effect of
(i) the particles initially sat on the defect that have not yet
managed to spread and (ii) the delay time experienced by the
particles scattering on the defect. Both these effects are negligible
at late time and in the scaling limit. Quantum effects can be
recognized in the propagating ripples [119–121], more evident in
the supersonic case.
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Being that the hopping fermions is a free model, its
simplicity allowed for exact computations: an intriguing
question concerns the same problem in a truly interacting
model like integrable spin chains. We expect that a
promising investigative line could be the recently intro-
duced generalized hydrodynamics [52,78–86], which for a
free model reduces precisely to the semiclassical approach
we used. This will be the subject of a forthcoming
publication. Another natural approach would be the use
of the recently introduced curved-CFT formalism [124].

We are grateful to Mario Collura, Pasquale Calabrese,
Fabian Essler, and Giuseppe Mussardo for useful discus-
sions. This work was supported by the EPSRC Quantum
Matter in and out of Equilibrium Ref. EP/N01930X/1
(A. D. L.).
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