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There has been significant interest recently in using complex quantum systems to create effective
nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for
photons and phonons; experimental progress is fast making these proposals a reality. Much work has
concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or
directional amplifiers for optical signals. In this Letter, we build on this work but move in a different
direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal
noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is
possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we
show here that one can ultimately control the direction of the flow of thermal noise. By appropriately
engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be
constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier
could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal
amplifier for nanoelectronic devices and superconducting circuits.
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Introduction.—The control of thermal noise in complex
systems has straightforward applications to the miniaturi-
zation of technology; as devices become smaller and
smaller it is essential to steer thermal noise away from
hot spots towards sinks where it may be disposed of (see,
e.g., Ref. [1]). Recently, a significant effort has emerged
that is devoted to designing a new generation of thermal-
based nanoscale devices such as thermal rectifiers [2–8],
thermal logic gates [9], thermal diodes [10,11], and thermal
transistors [12–14]. When quantum systems are coupled
together, the thermal noise associated with the reduced state
of each component is affected by the coupling, leading to a
flow of thermal noise [15]; controlling this thermal noise is
essential in the context of quantum technologies, such as
quantum computers [17] and simulators [18], especially
because of the fragility of quantum states and quantum
correlations [19] which is well known from the literature.
Coupled quantum systems can also be used to transfer
signals; a signal input to one quantum system can appear at
the output of another [15]. A basic building block for
controlling how such signals flow around a complex system
takes the form of devices that are nonreciprocal, in which
transmission of a signal from one point to another is
qualitatively different [20–24], in amplitude or phase, from
transmission in the reverse direction. An interesting line of
research has emerged recently that aims to use complex
mechanical, electromagnetic, or quantum-optical systems
to create effective optical isolators [25] or other kinds of
nonreciprocity [26]. Several theoretical analyses [27–39] of

such systems have been published and experimental
demonstrations [40–60] reported, illustrating a rich variety
of mechanisms for achieving the desired nonreciprocity. In
their simplest form, several such mechanisms are based on
coupled quantum systems that also share a common bath
[32]. These can be conceptually connected to techniques
discussed several years ago under the guise of cascaded
quantum systems [61].
In this Letter we will combine cascaded quantum

systems, nonreciprocal devices, and controlling the flow
of thermal noise to achieve a thermal rectifier. We analyze a
quantum system consisting of two fields between which we
set up nonreciprocal transport. Our analysis differs from
what is known in the literature because we are interested not
in the transport of signals, but in the transport of thermal
noise between the two fields. We also use recently
developed techniques [62–64] for analyzing the flow of
excitations between quantum systems and their heat baths
to better understand how our system manipulates the flow
of thermal noise. Our work thus considers thermal noise not
as a nuisance complicating our analysis, but as the object of
that analysis. Our results show that the temperature of a
third bath can be used to increase or decrease the thermal
noise of one system without affecting the other, paving the
way to quantum thermal transistors.
We proceed as follows. First, we describe an effective

quantum optics model based on the cascaded quantum
systems formalism [Fig. 1(a)]. This yields general expres-
sions that have a transparent physical meaning. We then
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develop an optomechanical model where a mechanical
oscillator is coupled to two electromagnetic cavities
[Figs. 1(b) and 1(c)]. We can show that these two systems
behave identically with respect to quantum states that are
broadband compared to coherent signals but still contained
within the bandwidth of the mechanical oscillator. This
allows us to use our general expressions to derive con-
clusions about this specific system. We then discuss how
the effect we explore manifests itself in experiment, with
reference to achievable parameters. Finally, we conclude
with a short discussion on the implications of our model.
Effective quantum optics model.—To start off, we briefly

summarize what is known about cascaded quantum sys-
tems; our aim is to build a model for the system shown in
Fig. 1(a) to discuss its operation as a nonreciprocal thermal
device. We start by considering two harmonic oscillators,
associated with annihilation operators ĉ1 and ĉ2, respec-
tively. Let Ĥsys govern the free dynamics of these systems.
We impose cascaded dynamics (see Sec. 12.1 of Ref. [61])
onto these systems; i.e., we assume that the output of
oscillator 1 forms the input of oscillator 2 via some channel,
whereas the output of oscillator 2 does not feed back into
oscillator 1. Define γ1 > 0 and γ2 > 0 as the coupling rates
of the two systems, respectively, to this channel. Together
with the two standard input-output relations ĉout;i ¼ ĉin;iþffiffiffiffi
γi

p
ĉi, where i ¼ 1, 2, we must therefore add the restriction

ĉin;2 ¼ ĉout;1. Next we can follow Ref. [61] in obtaining the
Langevin equations governing the dynamics of this system,
converting them into Itō stochastic differential equations,
and from there deriving a master equation. In the following
we denote by N̄3 the average occupation number of
an effective common bath, and we take there to be no
classical driving field associated with this bath. This master
equation can be rewritten in Lindblad form to yield _ρ ¼
−ð{=ℏÞ½Ĥsys þ Ĥhop; ρ� þ ðN̄3 þ 1Þκ3Dĉ3 ½ρ� þ N̄3κ3Dĉ†

3
½ρ�,

where Dĉ½ρ� ¼ ĉρĉ† − 1
2
fρ; ĉ†ĉg is the standard dissipative

Lindblad term, Ĥhop ¼ ð{ℏ=2Þ ffiffiffiffiffiffiffiffiffi
γ1γ2

p ðĉ†1ĉ2 − ĉ1ĉ
†
2Þ is a

hopping Hamiltonian, κ3 ¼ γ1 þ γ2 is a collective damping
rate, and ĉ3 ¼ ð ffiffiffiffiffi

γ1
p

ĉ1 þ ffiffiffiffiffi
γ2

p
ĉ2Þ= ffiffiffiffiffi

κ3
p

is a collective

bosonic annihilation operator that obeys ½ĉ3; ĉ†3� ¼ 1.
The physical content of this master equation is rather
straightforward: To produce the nonreciprocal effect
required of a cascaded system, the two oscillators must
be coupled by a direct coherent hopping term as well as to a
common bath; see Fig. 1(b). To account for an arbitrary
phase ϕ in the hopping between the two oscillators,
we replace ĉ2 → e{ϕĉ2 throughout, yielding Ĥhop ¼
ð{ℏ=2Þ ffiffiffiffiffiffiffiffiffi

γ1γ2
p ðe{ϕĉ†1ĉ2 − e−{ϕĉ1ĉ

†
2Þ and ĉ3 ¼ ð ffiffiffiffiffi

γ1
p

ĉ1þffiffiffiffiffi
γ2

p
e{ϕĉ2Þ= ffiffiffiffiffi

κ3
p

. This master equation results in equations
ofmotion that aremaximally nonreciprocalwith respect to ĉ1
and ĉ2, which is due to a coherent cancellation (addition) of
the hopping between the direct term and through the bath in
the direction 2 → 1 (1 → 2). The phase-matching condition
required to ensure this cancellation or addition is encoded in a
− sign in the coherent hopping Hamiltonian, compared to
a þ sign in the dissipation-related operator ĉ3. For further
generality, we must add terms to this master equation. First,
we modify the hopping Hamiltonian to Ĥhop¼ð{ℏ=2Þ×
ffiffiffiffiffiffiffiffiffi
γ1γ2

p ðe{ϕĉ†1ĉ2−e−{ϕĉ1ĉ†2ÞþℏðFĉ†1ĉ2þF�ĉ1ĉ
†
2Þ, where F

is an arbitrary complex constant; full nonreciprocity requires
F ¼ 0. Second, we add a bath for each oscillator:

_ρ ¼ −
{
ℏ
½Ĥsys þ Ĥhop; ρ�

þ
X3

i¼1

fðN̄i þ 1ÞκiDĉi ½ρ� þ N̄iκiDĉ†i
½ρ�g: ð1Þ

In the following we will use this master equation to describe
any system composed of two oscillators that are coupled
directly to one another, to a common thermal bath, and to two
individual thermal baths [Fig. 1(c)]. We will show that an
effective model where the coupling between two electro-
magnetic cavities and their common bath are induced by a
third, mechanical, mode is equivalent to the one
described here.
To proceed, we convert the master equation to its

equivalent quantum Langevin equations [15]: We derive
the mean-field equations of motion from Eq. (1), obtain the
operator equations by adding noise terms using the fluc-
tuation-dissipation theorem, and then Fourier-transform to
the frequency domain:

−ιω
�
ĉ1
ĉ2

�
¼

� −ιω1 −
γ1þκ1

2
−ιF

−ιF� − ffiffiffiffiffiffiffiffiffi
γ1γ2

p
eιϕ −ιω2 −

γ2þκ2
2

��
ĉ1
ĉ2

�

þ
� ffiffiffiffiffi

κ1
p

ĉin;1
ffiffiffiffiffi
κ2

p
ĉin;2

�
þ
� ffiffiffiffiffi

γ1
p
ffiffiffiffiffi
γ2

p
eιϕ

�
ĉin;3: ð2Þ

(a)

(b)

(c)

FIG. 1. In our quantum optics model (a) two harmonic
oscillators, e.g., electromagnetic (optical or microwave) cavities,
are arranged such that the output from system 1 is the input of
system 2. (b) Equivalently, the two systems are connected via a
coherent hopping term and share a common heat bath. (c) A
physical realization of a thermal rectifier; a mechanical system is
coupled to two electromagnetic cavities and a heat bath, is
proposed as a realization. In this model, the two systems are also
connected to their own heat baths.
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Under the white-noise assumption, these zero-
mean noise operators are such that hĉin;iðtÞĉ†in;jðt0Þi ¼
ðN̄i þ 1Þδi;jδðt − t0Þ, hĉ†in;iðtÞĉin;jðt0Þi ¼ N̄iδi;jδðt − t0Þ, and
hĉin;iðtÞĉin;jðt0Þi ¼ 0 (i, j ¼ 1, 2, 3). Since Eq. (2) is a linear
system of equations, a full description of the state at any
point in time requires only the first and second moments of
the quadrature operators x̂i ¼ ðĉi þ ĉ†i Þ=

ffiffiffi
2

p
and p̂i ¼

−{ðĉi − ĉ†i Þ=
ffiffiffi
2

p
(i ¼ 1, 2). It can be shown that the

covariance matrix V of this system obeys the Lyapunov
equation _V ¼ AV þ VAT þ N, where the drift matrix A is
related to the matrix in the first term of Eq. (2) and the noise
matrix N is related to the second and third terms of this
same equation. When the eigenvalues of A all have negative
real parts, a unique solution to V exists. In our case, we
define n̄i ¼ hĉ†i ĉii and Δ ≔ ω2 − ω1, and simplify our
expressions by taking κ1 ¼ κ2 ¼ γ1 ¼ γ2 ≕ κ. We want to
compare our system to one in which the two oscillators lack
any direct coupling or common bath. Simply removing the
common bath and the link between the oscillators funda-
mentally alters the nature of the system, as it changes the
number of baths each oscillator is connected to. For a
physically meaningful comparison we must modify the
bath parameters appropriately. In this disconnected sce-
nario, which is physically equivalent to taking jΔj → ∞ in
the above expressions while keeping F, κ, and N̄i (i ¼ 1, 2,
3) fixed, the steady-state occupation numbers are m̄i ¼
1
2
ðN̄i þ N̄3Þ (i ¼ 1, 2, 3); note that the m̄i are independent

of F and that m̄3 ¼ N̄3. Define Δni ≔ n̄i − m̄i (i ¼ 1, 2) to
quantify the difference between the two scenarios, whose
explicit expressions we reproduce elsewhere [15]. For
simplicity let us look at the maximally nonreciprocal case
(F ¼ 0), whereby

Δn1 ¼ 0 and Δn2 ¼
2κ2

4κ2 þ Δ2
ðm̄1 − m̄3Þ: ð3Þ

This very clearly shows that, whatever the value of
m̄1 − m̄2, we find an increase (decrease) in n̄2 over the
disconnected case for m̄1 > m̄3 (m̄1 < m̄3), whereas n̄1 is
unaffected by the presence of the other oscillator. It is
interesting to note that this conclusion remains unchanged
if we have m̄2 ¼ m̄1. In other words, even if the two
oscillators equilibrate to the same temperature in the
disconnected case, the channel will cause an excess or
depleted flow of thermal noise towards oscillator 2 that
depends only on the temperature difference between
oscillators 1 and 3. Figure 2 shows that the temperature
of the common bath can be used as a control knob to
modulate the flow of thermal noise into or out of the second
oscillator. Note that, for F ¼ 0 the temperature of the
first oscillator is unaltered. The temperature of the
second oscillator can be lower (blue), the same (green),
or higher (red) in comparison to the disconnected scenario
depending on the temperature of the common bath and Δ

which, e.g., can be chosen to reduce the flow of thermal
noise into oscillator 2 even when all coherent signals flow
from oscillator 1 to 2. The case for F ≠ 0 is shown in
Fig. S.1 of Ref. [15]. Regardless of the temperature
difference between the two oscillators and the direction
of signal flow, the thermal noise flowing into the second
oscillator can be increased or decreased.
We next turn our attention to an experimentally feasible

optomechanical platform that can realize this model. We
shall use terminology related to platforms operating in the
optical domain, but all of our results hold identically for
microwave-based systems. Our results are important for
interfacing with such systems, since the thermal occupation
of the electromagnetic field at microwave frequencies is
often non-negligible.
Optomechanical realization.—Our aim in this section is

to employ a mechanical degree of freedom interacting with
two optical fields, acting as a controllable reservoir. The
result is an optomechanical system that works as a thermal
rectifier, with the temperature of the mechanical oscillator
bath controlling the steady-state temperature of the second
optical field. A schematic realization of this optomechan-
ical system is sketched in Fig. 1(c). Here we consider an
optomechanical platform consisting of two optical cavities
with resonance frequencies ωi (i ¼ 1, 2), which interact
simultaneously with a mechanical resonator with frequency
ωm, and where the single-photon optomechanical coupling
strength between the oscillator and the ith cavity is gi
(i ¼ 1, 2). The direct photon hopping rate between the
cavities is denoted by J, which is assumed real for
simplicity. The Hamiltonian governing the unitary evolu-
tion of this system is given by [60,65,66]

Ĥ ¼ ℏωmb̂
†b̂þ

X

i¼1;2

ℏ½ωiâ
†
i âi þ giðb̂þ b̂†Þâ†i âi�

þ ℏJðâ1â†2 þ â†1â2Þ þ
X

i¼1;2

ℏEiðâie−ιωdt þ H:c:Þ; ð4Þ

FIG. 2. Change in occupation number of the second oscillator,
Δn2, as a function of the detuning Δ between the two oscillators
and the occupation number m̄3 of the common bath. Red (blue)
regions correspond to increased (decreased) thermal noise. Note
that Δn1 ¼ 0 throughout. (ϕ ¼ 0, m̄1 ¼ 50, m̄2 ¼ 100).
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where âi (with ½âi; â†j � ¼ δij) are the annihilation operators

of the cavity fields and b̂ is the mechanical annihilation
operator. The first and second terms of Eq. (4) describe the
free Hamiltonians of the mechanical and cavity fields,
respectively; the third term indicates the optomechanical
coupling between the cavities and the mechanical reso-
nator; and the fourth term shows the cavity-cavity photon
hopping. The last term represents the driving of each cavity
i by a coherent electromagnetic field with frequency ωd,
which we assume to be the same for both cavities,
and amplitude Ei. We note that our analysis also applies
to systems where two mechanical modes are used to
generate nonreciprocal coupling between two electro-
magnetic cavities. Recent realizations of such systems
[52,55,58,60] illustrate the feasibility of implementing
nonreciprocal transport of thermal noise and signals.
In a rotating frame with respect to ωd, and after adding

losses by means of dissipative Lindblad terms as in the
preceding section, the dynamics of the system can be fully
characterized by the quantum Langevin equations of
motion (i ¼ 1, 2)

_̂ai ¼ −
�
ιΔi þ

κi
2

�
âi − ιJâī − ιgiâiðb̂þ b̂†Þ þ Ei

þ ffiffiffiffi
κi

p
âin;i; ð5aÞ

_̂b ¼ −
�
ιωm þ γm

2

�
b̂ − ι

X

i¼1;2

giâ
†
i âi þ

ffiffiffiffiffi
γm

p
bin;m; ð5bÞ

where Δi ≔ ωi − ωd, 1̄ ¼ 2, and 2̄ ¼ 1. Here, κi ≔ κint;i þ
κext;i are the linewidths of the cavities in which κint;i and
κext;i are the intrinsic and extrinsic linewidths, respectively.
Intrinsic losses and input quantum noise are associated with
the zero-mean noise operators âint;i and âext;i, respecti-
vely; we can conveniently define âin;i ≔ ð ffiffiffiffiffiffiffiffiffi

κext;i
p

âext;iþffiffiffiffiffiffiffiffi
κint;i

p
âint;iÞ= ffiffiffiffi

κi
p

. The damping of the mechanical resonator
is given by γm. The zero-mean quantum fluctuations âin;i
and b̂in;m satisfy the usual white noise correlations [15].
Equations (5) can be solved by linearization around the
classical steady state of the system. We define the zero-
mean cavity field fluctuation operators δâi ≔ âi − αi where
αi ¼ 2Eie{ϕi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δ2

i þ κ2i
p

are the steady-state solutions,
ignoring a small change in Δi due to a static shift in
the position of the mechanical oscillator, and assum-
ing jαij ≫ 1.
If the driving frequencies are chosen such that Δi ≈ ωm

and the system is in the sideband-resolved regime, i.e.,
ωm ≫ κi, it is possible to use the rotating-wave approxi-
mation to drop the rapidly rotating terms oscillating at
�ωm. This allows us to eliminate the mechanical degree of
freedom, whereby the equations can be approximated in the
frequency domain by

− ιω

�
δâ1
δâ2

�

¼
�−ιΔ1−

κ1
2
−G2

1χmðωÞ −ιJ−χmðωÞG1G2e−ιϕ

−ιJ−χmðωÞG1G2eιϕ −ιΔ2−
κ2
2
−G2

2χmðωÞ

��
δâ1
δâ2

�

þ
� ffiffiffiffiffi

κ1
p

âin;1
ffiffiffiffiffi
κ2

p
âin;2

�
þ
� G1

ffiffiffiffiffi
γm

p
~χmðωÞ

G2
ffiffiffiffiffi
γm

p
~χmðωÞeιϕ

�
b̂in;m ð6Þ

where Gi ¼ giαi is the effective optomechanical coupling
rate and the mechanical susceptibility is defined as
χmðωÞ ¼ 1=½γm=2 − {ðω − ωmÞ�. To simplify matters, we
chose the phase reference such that G1 is real and set G2 →
G2e{ϕ (where theG2 on the right-hand side is real). We also
defined ~χmðωÞ ≔ χmðωÞjχmðΩÞj=χmðΩÞ, where Ω is some
frequency of interest. This procedure is detailed else-
where [15].
Equation (6) reveals that in general the photon hopping

between cavities is not symmetric—note that the off-
diagonal terms of the drift matrix on the right-hand side
of the equation are not complex conjugates of one another.
This means that by properly choosing the system param-
eters one can break the reversibility of the thermal photon
hopping between the cavities and set up a preferred
direction for the flow of thermal noise. For example, a
situation of full nonreciprocity at frequency Ω, where the
photon hopping is entirely suppressed in the direction
2 → 1, may be obtained by choosing the parameters such
that J ¼ ιχmðΩÞG1G2e−ιϕ.
Consider, now, a quantum state centered around fre-

quency Ω in the rotating frame and whose bandwidth Γ is
much smaller than γm, such that χmðωÞ ¼ ~χmðωÞ ≈ χmðΩÞ,
constant over the bandwidth of the signal. Under these
“large bandwidth” conditions, when γm ≫ Γ, all the
parameters entering Eq. (6) can be held constant, and
this equation therefore becomes identical to Eq. (2), with
the following replacements: ωi → Δi þ G2

iℑfχmðΩÞg,
γi → 2G2

iℜfχmðΩÞg, and F → J − ιχmðΩÞG1G2e−ιϕ.
For example, perfect nonreciprocity requires J ¼
G1G2½ððγm=2ÞÞ2 þ ðΩ − ωmÞ2�−1=2, with ϕ chosen such
that F ¼ 0. A detailed discussion of the equivalence
between the two systems is presented elsewhere [15].
We can therefore apply the formalism developed previously
to conclude that any thermal noise in the signal will be
suppressed in one direction only. By manipulating the
properties of the mechanical oscillator, e.g., using an
auxiliary optical field, one may control the flow of thermal
energy in the electromagnetic signal transmitted between
the two cavities. An in-depth analysis [15] may be
performed to derive the flow of excitations between the
system and the three baths it is connected to. Figure S.2 in
Ref. [15] shows that changing the temperature of either
resonator does not affect the flow of excitations between
the other resonator and its own bath. Any excess flow
between the resonators is therefore borne exclusively by
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their common bath and the link between them. The net
flow, given by the sum of the flows to all baths, is shown to
be equal to zero, as required for physical consistency.
This proposed thermal rectifier can be implemented

using an on-chip microwave electromechanical system
based on a lumped-element superconducting circuit with
a drumhead capacitor [52,58] or a dielectric nanostring
mechanical resonator [60]. We assume the following
experimentally feasible parameters: Optomechanical cou-
pling rates of G1 ¼ G2 ¼ 2π × 7 kHz, cavities resonant at
2π × 5 GHz and having damping rates of κ1 ¼ κ2 ¼
2π × 2 MHz, mechanical resonance frequency ωm ¼
2π × 6 MHz, and damping rate γm ¼ 2π × 100 Hz.
Inductive or capacitive coupling between microwave res-
onators can yield J ¼ 2π × 1 MHz. An auxiliary cavity can
be used to change the isolation bandwidth γm. The ambient
temperature of the microwave and mechanical resonators
can be kept below 10 mK by using cryogen-free dilution
refrigerators. Optomechanical cooling can be used to cool
the mechanical resonator down to ∼0.5 phonons (260 μK).
For these parameters, the temperature of resonator 2 is
lower with respect to the disconnected case, and
depends linearly on that of resonator 1. Furthermore, the
temperature of resonator 1 is independent of that of
resonator 2.
Conclusions.—We have investigated a generic frame-

work to describe nonreciprocal transport in compound
quantum systems. In contrast to several previous studies,
we chose to concentrate on the transport of thermal states
rather than coherent signals. Our framework can easily be
mapped to a prototypical optomechanical realization,
which we discussed explicitly in the text. We have also
shown how, with parameters typical of present-day micro-
wave optomechanical experiments, the effects we describe
should be visible in a proof-of-concept experiment. In the
context of quantum measurements and emerging quantum
technologies, these techniques and ideas will find use in the
manipulation of flow of thermal noise inside quantum
devices for phonon-based signal processing and computa-
tion, as well as in the construction of quantum-limited
amplification systems that perform measurements on sen-
sitive quantum devices without adding thermal noise. Our
system can be realized with state-of-the-art technology both
in optical [55] and microwave [60] domains, and is
potentially suited to control the flow of thermal noise in
nanoscale devices and to design a new generation of
thermal rectifiers, thermal diodes, and transistors. Our
work could facilitate noise control and remote cooling of
nanoelectronic devices and superconducting circuits using
in situ-engineerable thermal sinks with possible applica-
tions in emerging quantum technologies such as quantum
computers and simulators.
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