
 

Tightening Quantum Speed Limits for Almost All States

Francesco Campaioli,1,* Felix A. Pollock,1 Felix C. Binder,2 and Kavan Modi1
1School of Physics and Astronomy, Monash University, Victoria 3800, Australia

2School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore

(Received 13 October 2017; published 9 February 2018)

Conventional quantum speed limits perform poorly for mixed quantum states: They are generally not
tight and often significantly underestimate the fastest possible evolution speed. To remedy this, for unitary
driving, we derive two quantum speed limits that outperform the traditional bounds for almost all quantum
states. Moreover, our bounds are significantly simpler to compute as well as experimentally more
accessible. Our bounds have a clear geometric interpretation; they arise from the evaluation of the angle
between generalized Bloch vectors.
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Quantum speed limits (QSLs) set fundamental bounds on
the shortest time required to evolve between two quantum
states [1–3]. The earliest derivation of the minimal time of
evolution was in 1945 by Mandelstam and Tamm [4] with
the aim of operationalizing the famous (but often misunder-
stood) time-energy uncertainty relations [5–9]Δt ≥ ℏ=ΔE,
relating the standard deviation of energy with the time it
takes to go from one state to another. QSLs were originally
derived for the unitary evolution of pure states [10–12];
since then, they have been generalized to the case of mixed
states [13–16], nonunitary evolution [17–19], and multi-
partite systems [20–23].
Extending their original scope, their significance has

evolved from fundamental physics to practical relevance
[24,25], defining the limits of the rate of information
transfer [26] and processing [27], entropy production
[28], precision in quantum metrology [29] and time scales
of quantum optimal control [30–33]. For example, in
Ref. [34], the authors use QSLs to calculate the maximal
rate of information transfer along a spin chain; similarly,
Reich et al. show that optimization algorithms and QSLs
can be used together to achieve quantum control over a
large class of physical systems [35]. In Refs. [36–38], QSLs
are used to bound the charging power of nondegenerate
multipartite systems, which are treated as batteries.
Combining the Mandelstam-Tamm result with the results

by Margolus and Levitin, along with elements of quantum
state space geometry [39], leads to a unified QSL [40]. It
bounds the shortest time required to evolve a state ρ to
another state σ by means of a unitary operator Ut generated
by some time-dependent Hamiltonian Ht:

TLðρ; σÞ ¼ ℏ
Lðρ; σÞ

minfE;ΔEg ; ð1Þ
where Lðρ; σÞ ¼ arccos½F ðρ; σÞ� is the Bures angle, a
measure of the distance between states ρ and σ; F ðρ; σÞ ¼
tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp � is the Uhlmann root fidelity [41,42];

ρt ¼ UtρU
†
t , E ¼ ð1=TÞ R T

0 ðtr½ρtHt� − hð0Þt Þdt is the aver-

age energy, with hð0Þt being the ground-state energy of Ht;
and ΔE ¼ ð1=TÞ R T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ρtH2

t � − tr½ρtHt�2
p

dt is the stan-
dard deviation [14] (ℏ ¼ 1, here and in the following).
For pure states ρ ¼ jψihψ j and σ ¼ jϕihϕj, the Bures

angle reduces to the Fubini-Study distance dðjψi; jϕiÞ ¼
arccos jhψ jϕij [39,43,44]. Under this condition, Eq. (1) is
provably tight [40]. In the case of mixed states, on the other
hand, the speed limit induced by the Bures metric is in
general not tight.
In this Letter, we derive a tighter bound for the speed of

unitary evolution. We propose the use of the angle between
generalized Bloch vectors [45,46] as a distance for those
elements of the state space that can be unitarily connected,
and show that it induces an attainable bound for the unitary
evolution of mixed qubits. However, this distance does not
reduce to the Fubini-Study distance when pure states of
dimensionN > 2 are considered.We thus introduce another
distance that reduces to the Fubini-Study distance for pure
states, and derive the corresponding speed limit. Careful
analysis of both newly introduced QSLs—analytical for
qubits and numerical for higher dimensions—shows that
they are tighter than the one derived from the Bures angle for
the vastmajority of states.We concludewith a unified bound
for the speed limit of unitary evolution.
Attainability for mixed states.—Let ρ ¼ P

iλijriihrij and
σ ¼ P

iλijsiihsij be two mixed states with the same
spectrum. Let ρ0 ¼ P

iλ
0
ijriihrij and σ0 ¼ P

iλ
0
ijsiihsij be

another pair of mixed states with the same degeneracy
structure as ρ and σ, but different eigenvalues λ0i. Any
driving Hamiltonian that maps ρ to σ will map ρ0 to σ0 in the
same amount of time, independent of their spectrum. On
the other hand, the Bures angle is a continuous function
of the spectrum of the mixed state; i.e., we could
have Lðρ; σÞ ≈ 1 while Lðρ0; σ0Þ ≈ 0. Even though the
denominator of Eq. (1) may in principle also differ between
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these two scenarios due to its state dependence [47], that
bound cannot be tight for the case of mixed states. This
observation is particularly evident in the case of mixed
qubits, as exemplified in Fig. 1.
The poor performance of Eq. (1) stems from the con-

struction of the Bures distance for mixed states, which relies
on purifying state ρi to some jψ ii embedded in a larger
Hilbert space H ⊗ HB, such that trB½jψ iihψ ij� ¼ ρi. The
distance L between two states ρ1, ρ2 ∈ SðHÞ is defined as
the minimal Fubini-Study distance between the pure states
jψ1i, jψ2i, where the minimum is taken with respect to all
possible unitaries that act on the elements of H ⊗ HB.
However, tracing overHB, in general, turns unitary dynam-
ics between jψ1i and jψ2i into nonunitary dynamics
between ρ1 and ρ2 [50]. Consequently, the Bures metric
does not necessarily select geodesics generated by unitary
operations, even if ρ1 and ρ2 have the same spectrum.
The fact that Eq. (1) constitutes a loose bound for the

speed of unitary evolution of mixed states is well known,
and there are several proposals to tackle this problem
[51–54]. In particular, Ref. [51] takes a geometric approach
to obtain an infinite family of speed limits, whose proper-
ties, however, strongly depend on the choice of distance. As
a trade-off for this freedom, the task of finding a distance
that induces a tight bound for the unitary evolution of
mixed states remains unsolved. Reference [53] proposes a
bound that has a straightforward experimental interpreta-
tion, but that is obtained from an orbit-dependent distance,
is valid only for nondegenerate states, and does not provide
an explicit relation between the purity of the state and the
minimal time of evolution.

We now propose two distance measures for mixed states
with the same fixed spectrum that do not suffer from the
problems outlined above. The corresponding QSLs out-
perform the bound in Eq. (1) and are much simpler to
compute, and to experimentally measure.
Generalized Bloch angle.—Any mixed state ρ ∈ SðHÞ

can be represented as

ρ ¼ 1

N

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 1Þ

2

r
r · A

�
; ð2Þ

where N ¼ dimH, and A ¼ ðA1;…; AN2−1Þ is a set of
operators that form a Lie algebra for SUðNÞ, such
that tr½AiAj� ¼ 2δij [46]. The generalized Bloch vector
(GBV) r has to satisfy a set of relations in order to represent
a state [46]. We define the subset SΛðHÞ ≔ fρ ∈
SðHÞ∶specðρÞ ¼ Λg as the set of states with fixed spec-
trum Λ that can be unitarily connected. The function

Θðρ; σÞ ¼ arccos ðr̂ · ŝÞ ð3Þ
is a distance for the elements of SΛðHÞ for any fixed
spectrumΛ, where r̂ and ŝ are the GBVs associated with the
states ρ and σ, respectively, normalized for their length
∥r∥2 ¼ ∥s∥2 (see proof of Theorem 1). The angle Θ can be
expressed as a function of ρ and σ, independently from the
chosen Lie algebra, Θðρ; σÞ ¼ arccos ððtr½ρσ� − 1=NÞ=
ðtr½ρ2� − 1=NÞÞ, using tr½ρσ� ¼ ð1þ ðN − 1Þr · sÞ=N.
Note that the distance Θðρ; σÞ does not depend on the
basis chosen to represent the states, since the trace is basis
independent.
Our first result is a bound on the speed of unitary

evolution for the elements of SΛðHÞwith fixed spectrumΛ,
derived from the distance Θ:
Theorem 1.—The minimal time required to evolve from

state ρ to state σ by means of a unitary operation generated
by the Hamiltonian Ht is bounded from below by

TΘðρ; σÞ ¼
Θðρ; σÞ
QΘ

; where

QΘ ¼ 1

T

Z
T

0

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tr½ρ2t H2

t − ðρtHtÞ2�
tr½ρ2t − 1=N2�

s
: ð4Þ

The proof, similar to that of other QSL results, is given in
Sec. I of the Supplemental Material [55].
For pure states, we would like Eq. (4) to reduce to the

unified bound (1) obtained from the Fubini-Study metric
[43,44]. However, bound (4) satisfies this requirement only
for qubits:
Remark 1.—Bound (4) does not reduce to the QSL

induced by the Fubini-Study metric for pure states, except
for qubits (N ¼ 2).
We give the proof in Sec. II of the Supplemental Material

[55]. The reason why Θ does not conform with the Fubini-
Study distance for pure states of arbitrary dimension is that

FIG. 1. Let ρ and σ be two mixed qubit states with the same
spectrum, ρ ¼ λjr1ihr1j þ ð1 − λÞjr2ihr2j, and σ ¼ λjs1ihs1jþ
ð1 − λÞjs2ihs2j, λ ∈ ð0; 1Þ, λ ≠ 1=2, where fjr1i; jr2ig and
fjs1i; js2ig are two orthonormal bases. The problem of unitarily
evolving ρ to σ can be mapped to evolving jr1i to js1i (or
equivalently, jr2i to js2i). Equation (1) is tight for pure states;
thus, any Hamiltonian that takes jr1i to js1iwill also take ρ to σ in
the same time. For any Hamiltonian with bounded standard
deviation ΔE ≤ E, this time is bounded from below by θ=E,
where θ ¼ dðjr1i; js1iÞ is the distance between jr1i and js1i, i.e.,
half of the angle between the vectors associated with jr1i and js1i.
However, Eq. (1) for the same constraint on the Hamiltonian
suggests that TL ¼ Lðρ; σÞ=E, with Lðρ; σÞ < θ for every choice
of λ ≠ 0, 1 [see Eq. (9)], making the QSL unattainable for all
mixed states.
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the group of rotations on the GBVs does not correspond to
the group of unitary operators on states. When going from
initial to final state, unitary evolution avoids the forbidden
regions of the generalized Bloch sphere, whereas rotations
would go straight through these regions, underestimating
the distance between the considered states.
In order to derive a speed limit that conforms with the

QSL for pure states regardless of the dimension of the
system, we introduce the distance

Φðρ; σÞ ¼ arccos

0
@

ffiffiffiffiffiffiffiffiffiffiffi
tr½ρσ�
tr½ρ2�

s 1
A ð5Þ

for the elements of SΛðHÞ for any fixed spectrum Λ, which
reduces to the Fubini-Study distance for the case of pure
states. If states of different purity were considered, neither
Θ nor Φ would be distances, since the symmetry and
triangle inequality properties would be lost. As with Θ, we
derive a bound on the speed of unitary evolution from
distance Φ:
Theorem 2.—The minimal time required to evolve from

state ρ to state σ by means of a unitary operation generated
by the Hamiltonian Ht is bounded from below by

TΦðρ; σÞ ¼
Φðρ; σÞ
QΦ

; where

QΦ ¼ 1

T

Z
T

0

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ρ2t H2

t − ðρtHtÞ2�
tr½ρ2t �

s
: ð6Þ

The proof can be carried out using arguments similar to
those for the proof of Theorem 1; see Sec. III of the
Supplemental Material [55]. Remarkably, the bound
expressed in Eq. (6) reduces to the Mandelstam-Tamm
bound for pure states, since Φ reduces to the Fubini-Study
distance and QΦ reduces to ΔE [56].
In contrast to bound (1), the two QSLs derived here

account for both the energetics of the dynamics and the purity
of the driven state. The latter is accounted for by the
denominators of QΘ and QΦ, while the term in the numer-
ators,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ρ2t H2

t − ðρtHtÞ2�
p

, is a lower bound on the instan-
taneous standard deviation of the Hamiltonian Ht [57].
It is worth highlighting that the bounds derived from Θ

and Φ are significantly easier to compute than the one
expressed in Eq. (1) for the case of mixed states, since no
square root of density operators needs to be calculated, and
thus no eigenvalue problem needs to be solved. More
specifically, in order to compute the Bures angle, one needs
to perform two matrix multiplications and two matrix
square roots, whereas only two matrix multiplications
are needed to compute Θ or Φ [58]. Accordingly, distances
Θ and Φ can be experimentally estimated more efficiently
than the Bures angle, which involves the evaluation of the
root fidelity between the two considered states, and is
harder to obtain than their overlap. The latter can be
determined by means of a controlled-swap circuit

[61–63]. Finally, not only are our bounds simpler to
compute and measure, they also outperform Eq. (1), as
we will show next.
Attainability of new bounds.—We now study the bounds

presented in Eqs. (4) and (6), and compare them to that in

FIG. 2. (a) Bounds TL [Eq. (1)], TΦ [Eq. (6)], and TΘ [Eq. (4)],
as a function of the eigenvalue λ, for two mixed and antipodal
qubit states ρ ¼ λjr1ihr1j þ ð1 − λÞjr2ihr2j and σ ¼ λjr2ihr2jþ
ð1 − λÞjr1ihr1j. The unitary evolution is generated by the Ham-
iltonian H ¼ eiφjr1ihr2j þ H:c: Bounds are symmetric with
respect to λ ¼ 1=2. The same hierarchy holds for nonantipodal
mixed qubit states. Bound TΘ is always attainable. (b) For N ¼ 3
(qutrits), the hierarchy between the three bounds expressed with
three regions of the polytope defined by the spectrum fλ1; λ2; λ3g
of states ρ and σ, as indicated in the legend. The corners represent
pure states, while the center represents the maximally mixed
state. The shape of the regions reflects a specific choice of H, ρ,
and σ; similar features are common to those of any pair of states.
For the case of qutrits, TL is never larger than max½TΘ; TΦ� (see
Sec. IV of the Supplemental Material [55]). (c) Evaluation of
1 − TL=max½TΘ; TΦ� as a measure of the tightness of the new
bounds, for 3 ≤ N ≤ 10, with a sample size of 106. For every run,
a different Haar-random state and a different Hamiltonian are
generated. TL can be larger than max½TΘ; TΦ�, but only for 0.1%
of the sampled states, and only with a difference of 1% with
respect to the largest of the new bounds. (d) Density plot of 105

qutrit states, sampled approximately uniformly in terms of purity.
The axes show numerical estimations of 1 − TL=max½TΘ; TΦ�
(horizontal) and 1 − tr½ρ2� (vertical). We obtained the Pearson
correlation coefficient r ¼ 0.8 for the linear model between 1 −
tr½ρ2� and 1 − TL=max½TΘ; TΦ�. Bounds TΘ and TL coincide for
pure states (bottom left), as shown analytically, and differ for
increasingly mixed states (top right). This behavior qualitatively
extends to N-dimensional systems.
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Eq. (1) for the same choice of initial state ρ and
Hamiltonian Ht. For the case of mixed qubits, we calculate
all three bounds analytically: Take ρ ¼ λjr1ihr1j þ ð1 −
λÞjr2ihr2j as the initial state, and H ¼ eiφjr1ihr2j þ H:c: as
the Hamiltonian, where φ ∈ ½0; 2π� is a phase. The chosen
Hamiltonian generates the optimal unitary evolution for
any choice of final state σ ¼ λjs1ihs1j þ ð1 − λÞjs2ihs2j, for
js1i ¼ cos θjr1i þ eiφ sin θjr2i. The bounds read

TΘðρ; σÞ ¼ θ; ð7Þ

TΦðρ; σÞ ¼ arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 cos 2θ

1 − k2

s � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

2k2

s
; ð8Þ

TLðρ; σÞ ¼ arccosðFþðθ; λÞ þ F−ðθ; λÞÞ; ð9Þ

where F�ðθ; λÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2c2θ � 2kcθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2s2θ

qr
, with

cx ¼ cos x, sx ¼ sin x, and k ¼ 1–2λ.
Note that these bounds are independent of the relative

phase φ, as we expect, and only depend on the distance
θ ¼ dðjr1i; js1iÞ between the basis elements, and on the
value of λ. Bound TΘ is tight and attainable and does not
depend on the spectrum Λ. A simple plot of the bounds
shows that TΘ ≥ TΦ ≥ TL [see Fig. 2(a)]. The three bounds
coincide for pure states λ ¼ 0, 1 and for the trivial case
of θ ¼ 0.
In the general case of higher dimensions (up to N ¼ 10),

we study the tightness of bounds TΘ and TΦ, for time-
independent trajectories, numerically [see Figs. 2(b) and
2(c)] [64]. The new bounds TΘ and TL coincide for pure
states (as analytically shown above), and the difference
between max½TΘ; TΦ� and TL grows with decreasing purity
[see Fig. 2(d)]. Despite the fact that TΘ and TΦ are larger
than TL for the vast majority of cases, there are some
exceptional regions where the latter can be larger than the
new bounds, such as along some degenerate subspaces,
which form a subset of measure zero of SΛðHÞ. In the
absence of a strict hierarchy between these bounds, we cast
our main result in the form of a unified bound

TQSLðρ; σÞ ¼ maxfTL; TΘ; TΦg; ð10Þ
where TL, TΘ, and TΦ are given by Eqs. (1), (4), and (6),
respectively.
Conclusions.—In this Letter, we have addressed the

problem of the attainability of quantum speed limits for
the unitary evolution of mixed states. We first showed that
the conventional bound given in Eq. (1) is not generally
tight for mixed states, because the Bures distance is not a
suitable choice under the assumption of unitary evolution.
We have proposed two new distances between those

elements of state space with the same spectrum—i.e., those
that can be unitarily connected—and derived the corre-
sponding QSLs. The first distance coincides with the angle
between the GBVs and induces a tight and attainable speed
limit for the case of mixed qubit states, but it does not

reduce to the unified bound in Eq. (1) for pure states of
arbitrary dimension. The second distance is designed to
conform for the case of pure states, while being as similar
as possible to the generalized Bloch angle. These bounds
arise from the properties of state space, when mixed states
are represented as GBVs, providing thus a simple geo-
metric interpretation. We have shown that the bounds
obtained by these two distances are tighter than the
conventional QSL given in Eq. (1) for the vast majority
of states. Moreover, our new bounds are always easier to
compute, as well as easier to measure experimentally.
Beyond its fundamental relevance, our result provides a

tighter, and hence more accurate bound on the rate of
information transfer and processing in the presence of
classical uncertainty. For instance, the computational speed
of a quantum computer that works between mixed states
would be bounded by Eq. (10), rather than Eq. (1). The
latter bound would wrongly suggest that, in order to speed
up computation, one could simply add noise, reducing the
purity of the considered states, with the effect of reducing
the time required to evolve between them. This paradoxical
situation is now ruled out by our new bound, which
demonstrates that in the proximity of maximally mixed
states, the time required to perform any unitary evolution is
finite and comparable to the time required to perform the
evolution between pure states.
There is a natural trade-off between the tightness of a

QSL and its computational complexity. The ideas presented
in this Letter open the door to finding a distance based on
the explicit geometric structure of (mixed) state space. Such
a distance would allow for the derivation of a QSL that is
guaranteed to be tight, but at the same time easy to
compute. It also remains open to apply the ideas developed
here for the case of nonunitary dynamics. Such a gener-
alization would require modifying our proposed distances
such that they accommodate changes in purity.
Operationally meaningful QSLs for open dynamics would
be of great practical importance to both theorists and
experimentalists alike; however, developing them would
require a careful analysis of the resource accounting
implicit in the choice of different distances.
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