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We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-
dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2
orders of magnitude, we observe the crossover from the “quantum” perturbative regime of low disorder to
the “classical” regime at higher disorder strength, and find an excellent agreement with numerical
simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms
to create well-defined energy states. This opens new avenues for experimental investigations of three-
dimensional Anderson localization.
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Introduction.—The spectral function provides essential
information on the energy-momentum relation of one-
particle excitations in complex systems. This relation takes
a nontrivial form in the presence of random scatterers or
interparticle interactions [1]. The direct measurement of the
spectral function via angle-resolved photoemission spec-
troscopy (ARPES) [2] in strongly correlated electronic
systems has led to significant progress in the understanding
of high-Tc superconductivity [3]. More recently, the ability
to measure and exploit spectral functions in ultracold
atomic systems has also been widely demonstrated, for
instance, using radio-frequency spectroscopy [4,5] to reveal
the presence of a pseudogap in strongly interacting Fermi
gases [6,7], or to probe the Mott insulator and superfluid
regimes of interacting Bose gases in periodic lattices using
Bragg spectroscopy [8–10].
In disordered systems, the knowledge of the spectral

function is also crucial, from the search of gapless excita-
tions in the Bose glass phase in presence of interactions (see,
e.g., Ref. [11]) to the precise investigation of the Anderson
quantum phase transition for noninteracting particles
[12,13]. In the Anderson localization problem, the spectral
function is not only a basic ingredient used in theoretical
approaches to predict the position of the mobility edge (the
critical energy of the transition) [14], but it is also used as a
resource to extract an approximate value of the mobility edge
from experimental observations [15–17]. Significant dis-
crepancies observed between the experiments and theoretical
analyses [18–20] render the precise measurement of these
spectral functions yet more desirable.
In this Letter, we report on the direct measurement of the

spectral function at quasi-null momentum of noninteracting

ultracold atoms in continuous three-dimensional (3D) laser
speckle disordered potentials. We explore a large range of
disorder strengths, from the so-called “quantum” regime of
weak disorder (see, e.g., Ref. [21]), where the spectral
function is a narrow function whose width gives the inverse
lifetime of the initial momentum state, to the so-called
“classical” regime of strong disorder, where atoms can be
described by a semiclassical wave function and spectral
functions converge towards the probability distribution of
the disorder [22,23]. The measurements are done both with
an attractive (red-detuned) and a repulsive (blue-detuned)
laser speckle disorder, the latter case being particularly
important since most experimental studies of Anderson
localization of ultracold atoms have been done in that
configuration. Numerical calculations are in excellent
agreement with the experimental results, not only in the
marginal regimes of weak and strong disorder, but also in
the crossover in between where finding accurate expres-
sions is a theoretical challenge [24–26].
The method is based on a radio-frequency (rf) transfer

of atoms at rest in an atomic internal state j1i insensitive to
the disorder, to a final internal state j2i sensitive to the
disordered potential (see Fig. 1) [27]. The transfer allows us
to selectively populate eigenstates of the random potential
around the resonant energy Ef ¼ Ei þ ℏω set by the rf
frequency ω (here Ei;f corresponds to the total energy of
the initial and final states). Because of the finite energy
resolution of the transfer, energy levels in the disorder
behave as an effective continuum, whose density of states ρ
is equal to the density of states averaged over disorder
realizations [28]. According to the Fermi golden rule, one
can thus define a transfer rate Γ, proportional to the squared
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modulus of the transition amplitude from the initial state j1i
to the targeted final states, which is directly linked to the
spectral function of the disordered potential [see Eq. (1)
below]. We start indeed with atoms in a dilute Bose-
Einstein condensate (BEC) in a shallow trap, whose wave
function is very close to a null momentum state jk ¼ 0i
such that the total energy of the initial state can be taken
equal to the internal energy E1 [28]. The external energy
of the final states is then given by Eδ ¼ ℏδ, where δ ¼
ω − ΔHFS is the rf detuning from the bare resonant
frequency corresponding to the hyperfine splitting between
the respective internal energies ΔHFS=2π ¼ ðE2 − E1Þ=h≃
6.8 GHz (see Fig. 1). The rf transfer being associated with a
negligible momentum change, the transfer rate from state
j1i to j2i is thus proportional to the spectral function
AðEδ;k ¼ 0Þ:

Γ ∝ AðEδ;k ¼ 0Þ ¼
X

α

jhk ¼ 0jψαij2δðEδ − EαÞ

∼ jhk ¼ 0jψδij2ρðEδÞ: ð1Þ

Here, jψαi corresponds to the eigenstate of energy Eα and
� � � denotes the averaging over disorder realizations. One
can thus determine the spectral function by measuring the
transfer rate as a function of the rf detuning δ.
Experiment.—An original feature of the experiment

is the realization of a state-dependent disordered
potential significant only for the state j2i. As sketched
in Fig. 1(a), we use a laser close to the hyperfine transition

F ¼ 2 ↔ F0 ¼ 3 around the D2 line of rubidium at wave-
length λL ∼ 780.24 nm. Tuning the laser at ΔL=2π ≃
�80 MHz from the resonance, we create respectively an
attractive (red-detuned) or repulsive (blue-detuned) poten-
tial for the F ¼ 2 state, while the effect is 100 times
smaller on the F ¼ 1 state sinceΔHFS ≫ ΔL [28]. The laser
speckle is obtained by passing the laser beam through a
diffusive plate [35], which yields a well-characterized
disordered potential VðrÞ [27,28]. The attractive and
repulsive cases differ by their probability distribution
PðVÞ ¼ jV0j−1 exp ½−V=V0�ΘðV=V0Þ, with Θ the unit step
function, the average value V0 of the potential being
respectively negative or positive. The amplitude of the
disorder jV0j is proportional to the laser intensity, and can
be varied over 2 orders of magnitude (see Fig. 2).
In order to obtain a sharp resonance for the j1i ↔ j2i

transition, we use the two “clock states” jF ¼ 1;
mF ¼ −1i≡ j1i and jF ¼ 2; mF ¼ þ1i≡ j2i, whose
energy difference is insensitive (at first order) to magnetic
fluctuations at the “magic” magnetic field of B0 ¼ 3.23 G,
which we impose on the atoms. The result is a resonance of
width about 10 Hz. Note that since the two states have an
angular momentum difference ΔmF ¼ 2, we use a two-
photon rf transition, involving a microwave and a rf
field [28].
The experiment starts with the realization of a 87Rb-BEC

of about n1 ¼ 2 × 105 atoms in the state j1i. At the same
time, the disordered potential for state j2i is turned on. The
microwave and rf fields driving the j1i ↔ j2i transition are
then applied for a time duration t. The rf coupling is weak
enough such that the transfer rate Γ can be calculated via
the Fermi golden rule as written in Eq. (1) [36–39]. The
duration t is chosen short enough, i.e., Γt ≪ 1, such that
only a small fraction of atoms is transferred (a few percents
at most). At this short time scale, the population in state j2i
grows linearly with time as n2ðtÞ≃ n1ð0ÞΓt and the
transfer rate is directly obtained by counting the atoms
via fluorescence imaging. The spectral function
AðEδ ¼ ℏδ; 0Þ is finally obtained by repeating the meas-
urement at various values of the detuning δ. In practice, we
adapt the energy resolution, ΔE ¼ ℏ=t, to the typical
energy span of the spectral function for each disorder
amplitude, so that it does not affect the observed profile.
Numerical calculations.—The experimental results are

compared to the results of numerical calculations that take
into account the detailed statistical properties of the laser
speckle used in the experiments (see Ref. [28]). The
calculations are based on the temporal representation of
the spectral function

AðEδ;kÞ ¼
1

πℏ
Re

Z
∞

0

hkje−iHt=ℏjkieiEδt=ℏdt; ð2Þ

which amounts to evaluating the (disorder-averaged) scalar
product between the initial plane-wave excitation jki and

FIG. 1. Measurement scheme of the spectral function using a
state-dependent disordered potential. (a) A near-resonant laser
speckle field of detuning ΔL creates either an attractive (red-
detuned, ΔL < 0) or repulsive (blue-detuned, ΔL > 0) disordered
potential on atoms in internal state j2i, while the disordered
potential experienced by atoms in internal state j1i is negligible,
since ΔHFS ≫ ΔL. (b) and (c) A radio-frequency field at
frequency ΔHFS þ δ transfers a small fraction of atoms in a
BEC in state j1i to the state j2i. The transfer rate measured in this
experiment is proportional to the spectral function, according to
the Fermi golden rule [see Eq. (1)].
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the time-evolved state expð−iHt=ℏÞjki, with H the dis-
ordered Hamiltonian. Our time-propagation algorithm uses
an iterative scheme based on the expansion of the time-
evolution operator in a series of Chebyshev polynomials of
the Hamiltonian [40,41].
Results.—Figure 2 shows the measured spectral func-

tions AðEδ; 0Þ as well as the results of their numerical
calculations, for the cases of attractive (panel I), and
repulsive (panel II) disordered potentials with amplitudes
jV0j ranging from 60 Hz to 4 kHz. The area under the
experimental curves is normalized in order to allow for a
direct comparison with numerical calculations [28]. The
disorder strength has been precisely calibrated by adjusting
the experimental and numerical curves of panel (I.b),
leading to a 14% correction of the amplitude estimated
from photometric measurements. This correction factor is
then applied to all other measurements. The agreement is
excellent over the whole range of disorder amplitudes. Note

that, in contrast with numerical calculations, no disorder-
averaging was necessary for the experimental data. This is
due both to the finite experimental energy resolution that
provides an effective averaging over many energy states,
and to the very large expansion of the initial BEC that
“samples” efficiently the disordered potential.
In the attractive case (Fig. 2, panel I), we observe a

smooth crossover from the weak disorder regime [panel
(I.a)], where the spectral function is relatively narrow,
symmetrical and centered closed to the averaged disorder
amplitude V0, to the strong disorder regime [panel (I.f)]
where it becomes strongly asymmetrical. These two mar-
ginal regimes can be understood by introducing an impor-
tant energy scale of the problem, the correlation energy,
Eσ ¼ ℏ2=mðσ2⊥σ∥Þ2=3 [20] associated with the finite spatial
correlations lengths of the disordered potential. Here, m is
the atomic mass, while σ⊥ and σ∥ are, respectively, the
transverse and longitudinal correlation lengths of the

FIG. 2. Measured (blue dots) and numerically calculated (red solid lines) spectral functions AðEδ ¼ ℏδ;k ¼ 0Þ of atoms in attractive
(panel I) or repulsive (panel II) disordered potentials with various amplitudes. Raw numerical results have been convolved by the
experimental resolution function, yielding only minor corrections. The solid brown lines in panels (I.f) and (II.f) are the results of
numerical computations taking into account the residual effect of disorder in the initial state j1i [28]. In each panel, the black vertical
lines indicate the average value V0=h of the disorder. The small arrow in panel (II.f) indicates the estimated position of the average
ground state energy in local minima, Eb=h ¼ 1.3 kHz (see text). Insets in panels (I.a) and (II.a) illustrate the disorder potential for the
corresponding configuration. The probability distribution PðVÞ of the speckle potential is represented as a dashed green curve in panels
(I.f) and (II.f).
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anisotropic laser speckle intensity [28]. For our experiment
σ⊥ ∼ 0.306 and σ∥ ∼ 1.45 μm leading to Eσ=h ≈ 441 Hz.
In the quantum regime [jV0j ≪ Eσ , see panel (I.a)], the

amplitude of the disordered potential is too small to support
bound states on the typical size σ ¼ ðσ2⊥σ∥Þ1=3 of a speckle
grain. Atoms with an energy of the order of jV0j have a
large de Broglie wavelength compared to σ and their wave
function extends over many speckle grains [see Fig. 3(a)].
This leads to a smoothing of the disordered potential
(see, e.g., Refs. [42,43]), whose rescaled effective ampli-
tude corresponds to the width of the spectral function.
Alternatively, a perturbative approach of scattering allows
us to interpret this width as the inverse lifetime ℏ=τS, where
τS is the elastic scattering time, of the initial state jk ¼ 0i
[44]. This approach predicts a Lorentzian shape for the
spectral function, with a width ∼πV2

0=Eσ [21,25,43]. This
explains the quasi-Lorentzian shape shown in panel (I.a).
In the classical regime [jV0j ≫ Eσ, see panel (I.f)] the

situation is the opposite: atoms with an energy of the order
of jV0j have a de Broglie wavelength small compared to σ.
The corresponding wave functions have short spatial
oscillations, except around the turning points rj selected
by the resonance condition VðrjÞ ¼ ℏδ, where atoms
bounce classically on the disordered potential [see
Fig. 3(b)]. The overlap with the uniform initial state
jk ¼ 0i is thus negligible except at these positions (the
so-called “Franck-Condon principle”). The transfer
rate—or, equivalently, the spectral function—is then a
probe of the points where V ¼ ℏδ, i.e., the probability
distribution PðVÞ. This property was used in Ref. [27] to
estimate the disorder amplitude V0. Alternatively, it can be
retrieved using the formal expression of the spectral
function AðE;kÞ ¼ hkjδðE −HÞjki [28]. Neglecting the
kinetic energy term when jV0j ≫ Eσ , it yields directly

AðE;k ¼ 0Þ ¼ PðVÞ (see, e.g., Ref. [22]). Consistently, we
observe that the spectral function converges at strong
disorder towards the probability distribution of the speckle
potential [dashed green curve in panel (I.f)]. However, the
de Broglie wavelength of atoms remains large around
jEδj ∼ 0, so that the spectral function smoothes out the
sharp discontinuity of the potential distribution.
If we consider now the repulsive case (panel II), the

potential distribution is bounded from below with no state
in the negative energy range (gray area). This has two
consequences. First, the spectral function is strictly zero for
negative energy. Second, in the strong disorder regime, the
low energy states that are supported by local minima of
the disordered potential lead to an accumulation of states
around the averaged ground state harmonic oscillator
energy Eb ∼

ffiffiffiffiffiffiffiffiffiffiffi
V0Eσ

p
[22,23]. This results in a pronounced

and narrow peak in the spectral function, which is clearly
visible in panel (II.f) around the energy Eb (within 30%).
While the qualitative explanation was given in the strong-
disorder limit, let us note that the peak is present in all the
spectral functions shown in panel II. At the lowest disorder
amplitude (II.a), it results in a very narrow spectral
function, significantly narrower than for the attractive case
(I.a) and far from perturbative predictions. This behavior is
fully consistent with the strong departure from the pertur-
bative Born prediction observed in the direct measurement
of the elastic scattering time τS (which is related to the
inverse of the spectral function’s width as discussed above)
for the same disorder configuration [45]. These observa-
tions emphasize the difficulties encountered when approxi-
mate theories of Anderson localization use perturbative
expressions of the spectral function as a resource (see, e.g.,
Refs. [21,24,25]).
Conclusion.—We have demonstrated a method that uses

a state dependent disordered potential to probe the spectral
functions of ultracold atoms in 3D laser speckle potentials.
This allowed us to study the crossover from the quantum to
the classical regime, the behavior being significantly
different for red-detuned or blue-detuned laser speckles.
In the latter case, a pronounced peak attributed to lowest
bound states in potential minima is observed, resulting in
strong deviations from what wewould expect using a weak-
scattering perturbative approach. The present method,
which yields the spectral function around zero momentum,
could easily be generalized to finite values of k by, for
instance, using stimulated Raman transitions effected by
two laser beams whose angle allows one to select the
desired value of k [28,46]. Besides the measurement of the
spectral functions, a key feature of the presented method is
the controlled transfer of atoms to well-defined energy
states in the disorder, the targeted energy being chosen by
the resonance condition. It opens the possibility to probe
the 3D Anderson transition, via a subsequent wave packet
expansion, with an unprecedented energy resolution com-
pared to earlier experimental attempts [15–17]. The interest

FIG. 3. Schematics of the two marginal regimes of spectral
functions of noninteracting atoms in disordered potentials (here
shown for the blue-detuned case). (a) Weak disorder jV0j ≪ Eσ,
quantum regime; (b) Strong disorder jV0j ≫ Eσ, classical regime.
Eb corresponds to the average energy of the ground states in local
potential minima (see text) for blue-detuned laser speckle
disordered potential.
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ranges from the precise location of the mobility edge in
such spatially continuous disordered potentials [19,20] to
the investigation of the critical regime [47] and the eventual
observation of multifractality [48]. Last, the scheme could
be implemented in a “reversed way,” as proposed in
Refs. [4,49], where the ultracold atomic sample under
investigation is in the disorder-sensitive state while the
resonant transfer is driven to the “free” state. This con-
figuration could be used to probe the complex excitation
spectra of interacting and disordered quantum gases [4], for
instance, to reveal the predicted gapless excitation spectrum
in the Bose glass phase [50,51].
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