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The engineering of quantum systems and their environments has led to our ability now to design
composite or complex systems with the properties one desires. In fact, this allows us to couple two or more
distinct systems to the same environment where potentially unusual behavior and dynamics can be
exhibited. In this Letter we investigate the relaxation of two giant spins or collective spin ensembles
individually coupled to the same reservoir. We find that, depending on the configuration of the two
individual spin ensembles, the steady state of the composite system does not necessarily reach the ground
state of the individual systems, unlike what one would expect for independent environments. Further, when
the size of one individual spin ensemble is much larger than the second, collective relaxation can drive the
second system to an excited steady state even when it starts in the ground state; that is, the second spin
ensemble relaxes towards a negative-temperature steady state.
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In recent years, the hybridization of quantum systems
has become a key technique to design and demonstrate
novel quantum behaviors [1–4]. With the rapid progress in
quantum coherent manipulation, hybrid quantum systems
have now entered the regime where we can observe
unexpected or rather counterintuitive behavior even in
the presence of imperfections and noise [5–8]. Such hybrid
systems have not only shown the capability to achieve
superior properties each individual system alone cannot
achieve [4,6,9], but they also shed light on the fundamental
complexity of such quantum systems including coupling
structures and decoherence mechanisms [10]. Currently, a
number of such hybrid systems have been proposed (and
realized in some cases) with various elements coming from
atomic molecular and optical systems to solid-state sys-
tems including, for instance, trapped ions [11], optical or
microwave cavities and resonators [12,13], electron and
nuclear spin ensembles in quantum dots (QD) or nitrogen-
vacancy (NV−) centers in diamond [14–16], superconduct-
ing circuits in quantum electrodynamic systems [2,3], and
mechanical resonators [16,17]. This large diversity of
component systems really allows one to explore the unique
space hybridization potentially allows. Typically, however,
the focus has been on designing composite systems with
superior properties. Our focus here is on the other regime
of engineering such systems to explore unexpected and
counterintuitive behavior. Examples include the super-
radiant decay of a spin ensemble collectively coupled
with an optical mode [18,19] or spin ensemble squeezing
via collective decoherence [20]. When those spins couple
collectively with a bosonic reservoir, the spin dynamics
dramatically changes from those driven by individual spin-
boson coupling.

Typically investigations of such collective behavior have
focused on single spin ensembles, primarily as they are
experimentally easier to realize; however, multiple ensem-
bles have the potential for quite counterintuitive behavior
due to the complexity of the overall hybrid system [21].
Recently, several examples have been found experimentally
to investigate this problem in the quantum Hall (QH)
regime, the double nuclear spin domain formation gen-
erated by the dynamic nuclear polarization (DNP) [22,23],
and the nuclear spin relaxation measurement where nuclear
spin ensemble couples to the Nambu-Goldstone (NG)
mode which may act as a bosonic reservoir [24,25].
In this Letter, we will model these experimental systems

and explore a hybrid system composed of two giant spins or
collective spin ensembles coupled to the same bosonic
reservoir. These giant spins or spin ensembles may be part
of the same physical system, so let us introduce some
domainlike notation [26]. Spin domains allow one to
partition an ensemble into distinct noninteracting compo-
nents that yet still couple to the same bosonic reservoir. Our
illustrative hybrid system example is schematically
depicted in Fig. 1 as an ensemble of spin-1=2 particles
coupled to a single bosonic reservoir. The ensemble is
decomposed into two independent domains, each charac-
terized by its initial state. Here we will focus on the
dynamics of a double (sub)domain system; however, it
is worth mentioning that the analysis can be easily
expanded to multi-sub-domain systems. We will demon-
strate that the dynamics of these two subdomains exhibit
collective quantum phenomena such as superradiant decay.
Further we will show that collective relaxation of the total
system allows a subdomain to become excited even if it was
initially in its ground state.
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Let us now turn our attention to a mathematical descrip-
tion of our hybrid system where our total ensemble (as
shown in Fig. 1) is divided into two spin subdomains
labeled as domain D1 and D2. Each domain D1ð2Þ contains
N1ð2Þ 1=2 spins with the same energy ℏωs. For descriptive
convenience we will assume that all spins in a subdomain
are initially aligned in the same direction (either upwards or
downwards along the z axis). This in turn means that each
subdomain starts off in a symmetric state; however, the
overall system is not in the symmetric state (unless all spins
in the total system align in the same direction). We can
regard the subdomain D1ð2Þ as a collective spin J1ð2Þ whose
spin magnitude is N1ð2Þ=2. Next, the spins in the sub-
domains D1 and D2 couple with the bosonic reservoir with
a coupling constant g ≪ ωs. Our overall system composed
of two subdomains and the reservoir can then be desribed
by the Hamiltonian

H ¼ ℏωsðJz1 þ Jz2Þ þ
Z

ddkEkr
†
krk

þ ℏg
2
½ðJþ1 þ Jþ2 ÞRþ ðJ−1 þ J−2 ÞR†�; ð1Þ

where the first term represents the Hamiltonian of the
two subdomains with Jx;y;zi being the usual x, y, z collective
spin operators for the ith subdomain. The raising
(lowering) operators of these collective spins are defined
by J�i ¼ Jxi � iJyi . The second term represents the
Hamiltonian of the reservoir where Ek is the linear
dispersion relation of the reservoir with rkðr†kÞ the anni-
hilation (creation) operator satisfying the commutation
relation ½rk; r†k0 � ¼ δðk − k0Þ. d is the spatial dimension of
the system, and k ¼ ðk1;…; kdÞ the wave vector of the
reservoir. The final Hamiltonian represents the interaction
between the two domains and the reservoir with the
coupling strength g, where R ¼ R

ddkκkrk with κk being
a continuous function of k whose exact form depends on
the system under consideration.

Using a second order perturbation approach we can
derive a Lindblad master equation for the reduced density
matrix composed only of the two domains defined by
ρSðtÞ ¼ TrR½WðtÞ� with WðtÞ the density matrix for the
total system and TrR representing the operation tracing out
the reservoir degrees of freedom. Further, we assume that
initially the spin subdomains and the reservoir are uncorre-
lated. We can then characterize the reservoir by the density
matrix ρR ¼ expð−HR=kBTÞ=TrRðexpð−HR=kBTÞÞ with
HR being the second term in Eq. (1) while kB is the
Boltzmann constant and T the reservoir temperature. The
master equation using the Born-Markov approximation can
be written as [27]

_ρSðtÞ ¼ −iωs½Jz1 þ Jz2; ρSðtÞ� þ γðn̄þ 1ÞLðJ−1 þ J−2 Þ
þ γn̄LðJþ1 þ Jþ2 Þ; ð2Þ

where LðAÞ ¼ 2AρA† − A†Aρ − ρA†A, while n̄ ¼
1=ðeℏωs=kBT − 1Þ is the Bose-Einstein distribution and γ
is the damping rate that is a function of both the coupling g
and jκkj2 at the wave vector ks (satisfying Eks ¼ ℏωs). Now
from (2) the equations of motion for the expectation values
of collective spins can be expressed as

d
dt

hJz
1ð2Þi ¼ −2γð2n̄þ 1ÞhJz

1ð2Þi

þ γ

2
ð−N1ð2ÞðN1ð2Þ þ 2Þ þ 4hJz

1ð2Þi2 − 2hA12iÞ;
d
dt

hA12i ¼ −2γð2n̄þ 1ÞðhA12i − 4hJz1Jz2iÞ
þ 2γðhJz1i þ hJz2iÞðhA12i − 2hJz1Jz2iÞ
þ γðN2ðN2 þ 2ÞhJz1i þ N1ðN1 þ 2ÞhJz2iÞ

d
dt

hJz1Jz2i ¼ −
1

2

d
dt

hA12i; ð3Þ

with A12 ¼ Jþ1 J
−
2 þ J−1 J

þ
2 representing spin flip flop

between the two subdomains and where we have factorized
moments [28] as

hðJzi Þ2i ≈ hJzi i2; hJzi ðJzjÞ2i ≈ hJzi JzjihJzji;
hJzi J�i J∓j i ≈ hJ�i J∓j ihJzi i � hJ�i J∓j i;
hJ�i Jzi J∓j i ≈ hJ�i J∓j ihJzi i; ð4Þ

with i, j ¼ 1, 2 (i ≠ j). The collective spin relaxations in
the double spin domain system are described by four
dynamical variables: hJz1i, hJz2i, hJz1Jz2i, and hA12i. The
spin flip-flop hA12i dynamics may be identified with that of
the correlation between the Jz1 and Jz2 as seen from Eq. (3).
Let us now investigate the relaxation processes under the

various conditions in terms of the initial spin-domain
configuration and domain numbers N1 and N2. We
show the effect of such processes in Figs. 2–5 where
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FIG. 1. Schematic representation of a double spin subdomain
system coupled to a single reservoir. The double spin subdomain
system may be formed from spin ensembles or giant spins. Here
we denote the first spin subdomainD1 containingN1 spins shown
as red arrows, while the second spin domainD2 containsN2 spins
represented by blue arrows. In both subdomains, each spin
couples with the bosonic reservoir (at a temperature T) with
coupling constant g.
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relaxations are described by the normalized spin hSz
1ð2Þi ¼

hJz
1ð2Þi=N1ð2Þ. For an initial state, we take the antiparallel

configuration

jSDAPi ¼ j↑…↑iD1
⊗ j↓…↓iD2

: ð5Þ
An example of this initial spin state is the double nuclear
spin domains in the QH system which is realized by the
DNP [22,23]. To understand the essence of this spin
relaxation process more clearly, we focus on the steady
state behavior and the relaxation times for each domain. In
the case of the balanced system, that is, domains of equal
spin size, the results shown in Fig. 2 indicate that starting
with the antiparallel configuration (5) the relaxation proc-
ess for each domain is similar, decaying to the steady state
with the same hSzi i (i ¼ 1, 2). The average number of
excitations at the steady state is dependent on both the
domain size Ni and, of course, the reservoir temperature.
Here, the blue curves are the relaxation processes for the
zero temperature while red curves are those for finite
temperature.
As a comparison, the dashed curves show the decay

process under the parallel configuration initial state
defined by

jSDPi ¼ j↑…↑iD1
⊗ j↑…↑iD2

: ð6Þ
As both this initial state (6) and the Hamiltonian (1) satisfy
the symmetry of SU(2) for the total collective spin, the total
state decays on the symmetric subspace. In this case, the
collective effect of the decay, i.e., superradiant, is most
prominent. This superradiant effect becomes more visible
as the spin size increases as we illustrate in Fig. 2 for
(a) N1 ¼ N2 ¼ 10 and (b) N1 ¼ N2 ¼ 100 (The finite
temperature relaxation shows a similar behavior). To
illustrate the dependency of the relaxation time τN for
the antiparallel configuration (5) on the subdomain size, we
plot τN in Fig. 3 versus N ¼ N1 ¼ N2 for both zero
temperature and 400 mK. Here we identify τN with the
timewhen hJz

1ð2Þi becomes e ∼ 2.718 times smaller than the

expectation value of Jz
1ð2Þ (or hSz1ð2Þi) at initial time. Curve

fitting to these data points shows τN has the form a=N þ b,
a clear signature of superradiant decay [19].
The steady state of the antiparallel configuration for each

domain contains more excitations than the parallel con-
figuration case. This is due to the smaller spin size for each
domain (N1;2 < N1 þ N2) and the violation of the SU(2)
symmetry at the initial time of the dynamics. We can
always write the antiparallel configuration as a sum of a
symmetric subspace component and a nonsymmetric sub-
space component. The symmetric subspace component
decays like in the parallel configuration case; however,
the nonsymmetric subspace component decays differently.
This will be illustrated in more detail next when we discuss
the unbalanced case N1 ≠ N2.
In Fig. 4 we plot hSz1i (red solid line), hSz2i (blue dot line),

and hSzi ¼ ðhJz1i þ hJz2iÞ=ðN1 þ N2Þ (green dash line) for
various unbalanced configuration N1 > N2 with N1 ¼ 2, 5
and N2 ¼ 1 at zero temperature (the 400 mK situation
which is not shown displays similar characteristics).
In these unbalanced spin size cases, the smallest domain

D2 shows completely different relaxation compared to the

(a) (b)

FIG. 2. Plot of the normalized collective spin relaxations for
balanced number configurations. (a) N1 ¼ N2 ¼ 10 and
(b) N1 ¼ N2 ¼ 100. The blue (red) curves are for T ¼ 0 K
(400 mK). The solid (dotted) curves represent hSz1i (hSz2i) under
the initial condition jSDAPi, while the dashed curves are
the relaxations under the condition jSDPi. We have chosen
ωs=2π ¼ 10 GHz with γ ¼ 0.01 Hz.

FIG. 3. Plot of the relaxation time τN for the initial configu-
ration jSDAPi as a function of subdomain size N for zero
temperature (blue solid line) and finite (400 mK) temperature (red
dotted line). Curve fitting indicates a functional form for τN ∼
a=N þ b with a ¼ 422.33, b ¼ 1.62 for T ¼ 0 and a ¼ 365.64,
b ¼ 1.43 for T > 0. The 1=N dependence is a clear signature of
superradiant decay [19].

(a) (b)

FIG. 4. Plot of the collective spin relaxations for various
unbalanced number configurations (N1 > N2) at zero temper-
ature. The configuration considered are (a) N1 ¼ 2, N2 ¼ 1 and
(b) N1 ¼ 5, N2 ¼ 1. The red solid curves, blue dotted curves, and
green dashed curves represent hSz1i, hSz2i, and hSzi, respectively.
Sz1;min (Sz2;max) are the steady-state solution for hSz

1ð2Þi.
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larger domainD1. In fact, althoughD2 was initialized in the
ground state of the domain as given by Eq. (5), this
subsystem relaxed into more highly excited states (even
at zero temperature). More interestingly, (b) for N1 ¼ 5,
N2 ¼ 1 show that the second domain decays to a steady
state the population of spins in the excited state is greater
than 50%. In fact, the steady state of the second domain at
zero temperature for N1 ¼ N, N2 ¼ 1 scales as

hJz2i ∼
ðN − 1Þ2 − 2

2ðN þ 1Þ2 ; ð7Þ

and gradually gets closer to an almost fully excited state
when the system size gets larger. This behavior is not
restricted to N2 ¼ 1 and so to illustrate this point further,
we plot in Fig. 5 the relaxation process for N1 ¼ 104 with
N2 ¼ 102 again at zero temperature. It can be clearly seen
that in the steady state the second domain is approaching
the fully excited state, despite superradiant relaxation
of the first domain leading it to its ground state with
hJz1i ∼ −N1=2.
As a result, when the first domain spin size is sufficiently

larger than the second one, the second domain relaxes to the
steady state where the spin population in the excited state is
greater than 50%, i.e., the negative temperature state. So far
we have assumed equal coupling strengths between the
each spin and reservoir [see Eq. (1)] but this is not
necessary. Unequal coupling between the two domains
and the bosonic reservoir also leads to the negative
temperature phenomena in quite general cases [29].
Let us explore this decay characteristics of the collective

coupling through the example N1 ¼ 5, N2 ¼ 1, which is
shown in Fig. 4(b). With an initial state j↑1…↑5iD1

⊗
j↓6iD2

, we need to consider two manifolds of the total
system: that is, the symmetric subspace of the spin size
ðN1 þ N2Þ=2 and the second subspace of the spin size
ðN1 þ N2 − 2Þ=2. The dynamics conserves the spin
size, these two subspaces are enough to represent the total
system through the entire dynamics, and there is no transfer
of the population between these subspaces. The initial

component in each manifold decays via the coupling to the
reservoir; hence, the component on the symmetric manifold
will decay to the ground state j↓1…↓6i. Similarly, the
component on the second manifold will decay to its ground
state. The decay process is confined in each subspace and
hence gives the steady states the excitations in the second
domain. The decay to a negative temperature is not due to
the energy flow from the first domain to the second domain
via the reservoir, because an energy exchange occurs only
between the reservoir and the double domains. Therefore,
this behavior must be a result of the collective decay of the
total spin system. This mechanism of collective decay also
may generate entanglement between the two domains at the
steady state, even though the initial state is separable.
Next we turn our attention to potential physical systems

which may be able to realize our collective spin relaxations.
Two types of physical systems come to our attention with
the first being a hybrid system of electron and nuclear spins
in GaAs semiconductors [14,22–25,30–33]. As mentioned
before, when this system is set into the quantum Hall
regime, the double nuclear spin domains can be created by
initially polarizing the nuclear spin ensemble via DNP
[22,23,30–32,34]. Then, coupling them to the NGmode the
negative temperature relaxation should be observed. The
second potential system is electron spin ensembles formed
from NV− centers in diamond coupled to superconducting
resonators [21]. Here the two electron spin ensembles can
be coupled jointly to the superconducting resonators open-
ing the possibility for negative temperature experiments in
this regime. In the actual systems, however, there are many
error sources, for instance, the dephasing effects, which
destroy the collective phenomena. We have not included
such effects since our interest was the spin collective
dynamics. Even though it is included, we should observe
our spin collective phenomena by focusing on the dynam-
ics on a time scale shorter than the spin dephasing time.
This is because as we see in Figs. 2–5 the relaxation time
for the collective phenomena depends on the spin sizes and
for large domains it is shorter than the spin dephasing time.
Usually we assume ancillary systems coupled only to the

reservoir can be ignored; however, as our analysis has
shown, when there are other systems coupled to the same
reservoir, they can affect the system of interest significantly.
Even when the temperature of the shared reservoir is fixed,
one needs to be careful to define temperature for the system
at hand, as the temperature of each domain appears to be
different. These effects are much more prominent with the
shared reservoir in comparison to the dynamics seen in the
systems coupled with independent reservoirs.
The negative-temperature relaxation presented in our

Letter is due to the collective behaviors of the two spin
ensembles. On the other hand, in Ref. [35] it has been
shown that the negative-temperature state was experimen-
tally realized using the LiF crystal, and theoretically
investigated in Ref. [36] in terms of an entropy argument

FIG. 5. Plot of the normalized collective spin relaxations hSz1i
(red solid line) and hSz2i (blue dot line) for the unbalanced
configuration at zero temperature. Here we take N1 ¼ 104 and
N2 ¼ 102.
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(other theoretical studies and experimental setups for such
negative-temperature state realization, see references
therein). The negative-temperature states shown in these
references are driven not by the collective phenomena but
by the inversion of the external parameter such as the sign
of the external magnetic field. Furthermore, our negative-
temperature behavior occurs even when the reservoir
temperature approaches zero, which is not the case for
the systems shown in Refs. [35,36].
To summarize, we have investigated in this Letter

collective spin relaxation processes in a double spin-
domain system where all spins in the two domains are
collectively coupled to a single bosonic reservoir. The
dynamics of the total system, of course, shows superradiant
decay but also shows excitations arising in one of the
domains initially prepared in its ground state, even for a
zero temperature reservoir with no direct coupling between
domains. In fact, when there is a large imbalance in the size
or number of spins in each domain we can see the
relaxation to a negative temperature in the smaller one.
This decay behavior appears more prominent as the domain
size difference increases.
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