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We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in
a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally
suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first
benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a
function of the chemical potential and find excellent agreement with the corresponding equation of state.
We then perform matter wave focusing to extract the momentum distribution of the system and directly
observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum
distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting
fermions and bosonic dimers.
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Ultracold 2D Fermi gases are uniquely suited to inves-
tigate the interplay of reduced dimensionality and strong
interactions in quantum many-body systems in a clean and
well-controlled environment. Experiments have reported
on the creation of 2D Fermi gases with equal [1,2] and
unequal spin populations [3,4] and investigated pairing
[5–8], Fermi-liquid [9], and polaron physics [10,11]. The
equation of state (EOS) [12–14] was determined, and
evidence for pair condensation [15] and for a
Berezinskii-Kosterlitz-Thouless transition [16] could be
observed. Yet so far, ultracold 2D Fermi gases have always
been studied in harmonic trapping potentials, which quali-
tatively change the density of states and give rise to
inhomogeneous density distributions. This hinders the
observation of critical phenomena with a diverging corre-
lation length and exotic phases such as the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [17–20]. Furthermore,
the inhomogeneous density distribution complicates the
interpretation of nonlocal quantities such as correlation
functions or momentum distributions, which can be
extracted only as trap-averaged quantities [15,16].
These issues can be overcome by creating homogeneous

gases in box potentials whose walls are formed by repulsive
optical dipole potentials. Following this method, three-
dimensional (3D) uniform Bose gases have recently been
realized and used to investigate coherence and thermody-
namic properties [21,22] as well as nonequilibrium dynam-
ics [23]. In homogeneous 2D Bose gases, the emergence of

condensation, vortices, and supercurrents was studied
[24,25]. Very recently, the creation of 3D Fermi gases in
a box potential has been demonstrated, Pauli blocking in
momentum space was observed, and both balanced and
imbalanced Fermi gases have been studied in the strongly
interacting regime [26].
Here, we report on the experimental realization of

homogeneous 2D Fermi gases with tunable interactions.
By preparing a noninteracting Fermi gas, we realize a
textbook example of statistical physics and directly observe
Pauli blocking in the occupation of momentum states.
To measure the momentum distribution of interacting

gases, we have established a technique to rapidly remove
one spin component and thereby project the system onto a
noninteracting state. We apply this technique to a gas with
intermediate attractive interactions and observe a momen-
tum distribution that is qualitatively similar to that of a
noninteracting gas.
Weperformour experimentswith an equal spinmixture of

6Li atoms in the lowest two hyperfine states jF;mFi ¼ j 1
2
; 1
2
i

and j 1
2
;− 1

2
i, whichwe designate as j↑i and j↓i, respectively.

A sketch of the experimental setup is shown in Fig. 1(a). The
atoms are precooled as described in Ref. [27] and then
transferred into a hybrid trap consisting of a highly elliptic
red-detuned optical trap and a variable radial magnetic
confinement, which is generated by the curvature of the
magnetic offset field used to tune the interparticle inter-
actions [28]. This variable trapping can be used to com-
pensate for anticonfinement introduced by the lattice
potential, which provides the 2D confinement described
below. After a forced evaporative cooling in the elliptic trap
[Fig. 1(d)], we ramp on a repulsive optical ring potential as
sketched in Figs. 1(b) and 1(c). This ring potential is
generated by a cascaded setup of three axicons and projected
onto the atoms using a high-resolution (NA ¼ 0.62)
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objective [26,28,30,31]. We use the ring to cut out the
central, low-entropy part of the cloud [Fig. 1(e)] and then
ramp down the radial magnetic confinement such that the
excess atoms outside the ring leave the observation volume.
Next, we bring the gas into the 2D regime by loading

it into a blue-detuned optical lattice in the z direction. In
this lattice, the level spacing ℏωz ¼ hð12.4� 0.1Þ kHz
between the ground and the first excited state in the vertical
direction exceeds both the highest chemical potential
μ < h × 4 kHz and the highest thermal energy kBT <
h × 2 kHz encountered during our experiments, and hence
the system is in the 2D regime [32,33].
To transfer the atoms into a single node of the lattice, we

recompress the cloud by ramping up the power of the
elliptic trap, which reduces the width of the cloud in the z
direction below the lattice spacing of 2.9 μm. By

optimizing the position of the elliptic trap with respect
to the lattice, optimally 93% of the atoms can be loaded into
a single layer, where the number of atoms in adjacent layers
can be determined to a high precision in a single-shot
matter wave focusing measurement [28]. By shifting the z
position of the elliptic trap by half a lattice period, it is also
possible to create two equally populated adjacent layers
[28,34]. This makes the loading of noninteracting gases
more robust against populating adjacent layers by thermally
excited atoms and furthermore doubles the recorded signal
for absorption imaging.
In a first series of experiments, we study a noninteracting

Fermi gas, which provides us with a well-defined starting
point for our exploration of interacting systems. To create
such noninteracting systems, we first prepare a dual-layer
homogeneous 2D Fermi gas at a magnetic offset field of
B ¼ 320 G.At this field, the gas is weakly interactingwith a
3D scattering length of a3D ¼ −290a0, where a0 is the Bohr
radius. We perform further evaporative cooling by slowly
decreasing the height of the confining ring potential and then
ramp toB ¼ 527 G,which is close to the zero crossing of the
scattering length, to obtain a noninteracting Fermi gas.
As a first benchmark experiment, we measure the density

EOS n2D;↑ðμ; TÞ of this noninteracting Fermi gas. We
imprint a potential step, which is generated by a blue-
detuned laser beam reflected off the surface of a digital
micromirror device (DMD) and projected onto the atoms
[35]. We then image the resulting density distribution using
high-intensity absorption imaging [28,36,37]. As shown in
Figs. 2(a) and 2(b), the repulsive potential causes a disk-
shaped density depletion in the center of the cloud which
covers about 10% of its area. We apply potential steps with
different heights V while observing the corresponding
density depletion ΔnðVÞ¼ndisk2D;↑−n

center
2D;↑ ðVÞ, where ndisk2D;↑

and ncenter2D;↑ correspond to the single-layer density in the
undisturbed and depleted parts of the trap, respectively. We
perform such EOS measurements for gases with different
densities and temperatures; the resulting data sets are shown
in Fig. 2.
We calibrate the potential step height V by performing a

linear Thomas-Fermi fit to the first four points of the
different EOS measurements and take the mean of the
resulting values [14]. To extract the temperature and
chemical potential, we fit the density depletion with
Δnðμ0; T; VÞ ¼ n2D;↑ðμ0; TÞ − n2D;↑ðμ0 − V; TÞ using the
theoretical EOS n2D;↑ðμ; TÞ ¼ λ−2dB log½1þ expðμβÞ� for a
noninteracting 2D Fermi gas [38]. Here, β ¼ ðkBTÞ−1, and
the thermal de Broglie wavelength is given by
λdB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ2=mkBT
p

, where m is the mass of a 6Li atom.
We approximate the chemical potential μ0 in the outer part
of the trap to be constant for all step heights. For our coldest
data set, we obtain a temperature of T=TF ¼ 0.14� 0.02,
where the Fermi temperature TF is calculated from T and
μ0 using TF ¼ T log½1þ expðβμ0Þ� [39].
We validate these measurements by plotting the dimen-

sionless quantity n2D;↑λ2dB as a function of βμ for each of the

(a)

(b)

(c)

(d) (e) (f)

FIG. 1. Sketch of the experimental setup: The atoms are loaded
from a highly elliptic red detuned optical trap (red) into a single
nodal plane of a blue detuned optical lattice (light green) which is
formed by two laser beams (λ ¼ 532 nm) intersecting under an
opening angle of θ ¼ 10.4° (a),(b). The radial confinement is
provided by a ring-shaped repulsive potential (dark green) whose
diameter D can be adjusted between 50 and 200 μm (c). Panels
(d)–(f) show averaged (20–50 images) in situ density profiles and
the respective central line cuts at different stages of the prepa-
ration of a strongly interacting homogeneous Fermi gas at
B ¼ 830 G: After evaporation in the elliptic trap (d), the outer,
high-entropy region of the cloud is cut away by the repulsive ring
potential (e). After further evaporation, the radial magnetic
confinement is ramped down to spill the atoms outside the ring,
the atoms are transferred into the lattice, and we obtain a
homogeneous 2D gas (f).
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different systems [Fig. 2(c)] [40]. The different data sets all
collapse onto a single curve and are in excellent agreement
with the theoretical expectation.
We now go beyond this local probing of the density and

chemical potential by performing a direct measurement of
the momentum distribution of an ideal 2D Fermi gas. We
achieve this by mapping the momentum distribution to real
space usingmatter wave focusing [15,41–43]:We switch off
the radial confinement provided by the ring potential and let
the system evolve for a time t in aweak harmonic potential in
the radial direction. After a time evolution of a quarter of the
radial trap period τ ¼ 2π=ωr, all particles with momentum
ℏ k have moved to a position r ¼ ℏk=mωr. Hence, the
momentum distribution ~nðkÞ can be directly extracted from
the density distribution nðr; tÞ at t ¼ τ=4 via ~nðkÞ¼
ðℏ=mωrÞ2nðr¼ℏk=mωr;τ=4Þ [Figs. 3(b), 3(e), and 3(h)].
This technique can also be extended to perform matter

wave imaging instead of matter wave focusing by letting the
system evolve for t ¼ τ=2 instead of t ¼ τ=4 [44]. This
causes the initial density distribution to reappear inverted
around the center of the trap, i.e., nðr; τ=2Þ ¼ nð−r; 0Þ.
Comparing the matter wave imaged distribution at t ¼ τ=2
with the initial distribution provides a measure for the
quality of the matter wave lens formed by the radial
potential, which can be affected by anharmonicities of the

potential. For our experiments, we set the radial magnetic
trap frequency to a value of ωr ¼ 2πð33.3� 0.5Þ Hz and
ramp down the depth of the z confinement by a factor of 5 to
minimize the influence of its antitrapping potential while
keeping the atoms in the depth of field. We find that the
in situ and matter wave imaged density distributions are
virtually indistinguishable [Figs. 3(a), 3(c), and 3(i)], which
shows that, for this noninteracting system, our matter wave
focusing gives an accurate measurement of the momentum
distribution.
To extract the occupation fðkÞ ¼ Ak ~nðkÞ from the

momentum distribution ~nðkÞ, we use the k-space area Ak ¼
16π=D2 of a single kmode in a box potential with diameter
D. This allows us to directly observe Pauli blocking in our

FIG. 2. Density EOS for noninteracting homogeneous 2D
Fermi gases: The EOS is mapped out for different densities
and temperatures by imprinting a repulsive potential step onto the
atoms. This causes a density depletion Δn in the center of the
cloud (a),(b). Measuring this density depletion Δn as a function
of the step height directly yields the density EOS of the system.
By fitting the data with the EOS of a noninteracting Fermi gas, we
extract the temperature T and chemical potential μ0 for each data
set. The higher T=TF for the data set having the lowest density in
the outer ring (red squares) is most likely due to a reduced
evaporation efficiency. Using the fit results for T and μ to rescale
the data and plotting the dimensionless quantity n2D;↑λ2dB causes
the different data sets to collapse onto a single curve (c). The data
show excellent agreement with the prediction for a noninteracting
2D Fermi gas (solid purple line).

(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)

FIG. 3. Momentum distribution of a noninteracting 2D Fermi
gas: To measure the momentum distribution, we switch off
the confining ring potential and let the gas evolve in a weak
harmonic potential. A free time evolution t for a quarter of
the trap period τ performs a rotation in phase space by 90° as
sketched in (d),(e), causing the momentum distribution of the
gas to be mapped into real space. Averaged images (51–62
realizations) and corresponding azimuthal averages of the
density and momentum distribution are shown in (a),(b)
and (g),(h), respectively. After a free time evolution of half
a trap period, the in situ density distribution is mapped back
to real space (c); the azimuthal averages at t ¼ 0 (red
triangles) and t ¼ τ=2 (blue dots) are almost identical (i).
A diagonal cut through the momentum distribution (b) reveals
the occupation fðkÞ of the system (j), which shows close to
unity occupation around k ¼ 0 and drops off at the Fermi
wave vector kF ¼ ð1.93� 0.02Þ μm−1 (gray dash-dotted
lines). A fit with a Fermi distribution (red dashed line) yields
a temperature of T=TF ¼ 0.31� 0.02.
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noninteracting Fermi gas, which manifests itself in a unity
occupation of kmodes around k ¼ 0, followed by a drop in
the occupation at the Fermi wave vector kF [Fig. 3(j)].
Next, we quantitatively determine the chemical potential

and the temperature of the gas by fitting our data with the
Fermi distribution

fðkÞ ¼ ζ

1þ exp ½βðℏ2k2
2m − μ0Þ�

:

The free parameters of the fit are the temperature T, the
chemical potential μ0, and an overall amplitude ζ which
accounts for systematic errors in the determination of
~nðkÞ and Ak. The fit is in excellent agreement with the
data [Fig. 3(j)] and yields a chemical potential μ0 ¼
kBð148.8� 2.6Þ nK, a temperature T ¼ ð46.7� 2.2Þ nK,
and ζ ¼ 1.05� 0.06, where the errors denote 1σ-
confidence intervals of the fit. The dominant sources of
systematic errors on the amplitude of fðkÞ are the 2%
uncertainty of the radial trap frequency ωr, the 7%
uncertainty in the density calibration, and the 4% uncer-
tainty in the determination of the ring diameter D from
the in situ images. The fit results translate to
T=TF ¼ 0.31� 0.02, μ0=ℏωz ¼ 0.250� 0.005, and a
Fermi wave vector kF ¼ ð1.93� 0.02Þ μm−1. This is in
very good agreement with both the Fermi wave vector
deduced from the mean density kF;n̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn̄2D;↑
p ¼

ð1.86� 0.08Þ μm−1 and the temperature and chemical
potential obtained for a similar evaporation depth in the
EOS measurement shown in Fig. 2 (red solid line) [45].
We note that the fitted temperature is an upper bound,
affected by fluctuations in the particle number and the
inhomogeneity of the density distribution, which is
smaller than 11% of the mean density [28]. This value
includes both the actual density inhomogeneity due to the
presence of the harmonic potential used for the matter
wave focusing and artifacts due to imperfections of the
imaging beam.
When measuring the momentum distribution for varying

densities [see Fig. 4(a)], we observe that the occupation at
low momenta saturates to values close to unity for densities
ranging from 0.25 to 0.5 μm−2. This clearly shows Pauli
blocking in momentum space [26].
Finally, we realize an interacting homogeneous 2D

Fermi gas close to a broad Feshbach resonance [46] and
apply matter wave focusing. We prepare a single-layer
attractive 2D Fermi gas at B ¼ 1020 G where the ratio of
scattering length a3D to harmonic oscillator length lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mωz

p

is a3D=lz ¼ −0.56. In contrast to previous
experiments which measured the pair momentum distribu-
tion by converting pairs into deeply bound molecules [15],
we measure the momentum distribution of the individual
atoms [47]. This requires a negligible influence of colli-
sions on the time evolution. We achieve this by releasing
the gas from the vertical confinement [48,49] as well as

flashing on a light pulse propagating along the z direction
which rapidly ejects atoms in state j↑i [26,28,50,51]. This
projects the wave function of atoms in state j↓i onto free
particle states and allows us to extract the occupation fðkÞ
of the interacting system using the matter wave focusing
technique described above. For our interaction strength, we
expect only small deviations in fðkÞ compared to the
noninteracting system, since at T ¼ 0 the quasiparticle
weight Z and the gap Δ are calculated to be Z ≈ 0.9 [52]
and Δ ≈ 21% [53]. We therefore attribute the reduced
central occupation and the broadening of the momentum
distribution shown in Fig. 4(e) to thermal excitations.
In this Letter, we report on the realization of a homo-

geneous 2D Fermi gas trapped in a box potential. We
locally probe the system by imprinting a step potential
using a DMD and thereby measure the EOS of a non-
interacting Fermi gas. Furthermore, we apply matter wave
focusing to directly observe Pauli blocking in the momen-
tum distribution of a noninteracting 2D Fermi gas. Finally,
we demonstrate that the momentum distribution of inter-
acting gases can also be measured and observe a momen-
tum distribution that is qualitatively similar to that of a
noninteracting gas for intermediate interactions.
The homogeneous systems presented in this work are

particularly useful for studying nonequilibrium dynamics
of strongly correlated systems, since they allow interaction
quenches without triggering a mass redistribution, which is
unavoidable in harmonic traps. The combination of such a
homogeneous system with nonlocal probes is ideally suited
to observe critical phenomena and exotic phases such as
FFLO superfluidity, which are predicted to exist only in
narrow regions of the phase diagram. Finally, our

(a) (b)

(c)

FIG. 4. Saturation in the occupation of momentum states. The
occupation fðkÞ of noninteracting Fermi gases with in situ
densities of n̄ ¼ 0.24 (light blue hexagons), 0.38 (dark blue
stars), and 0.50 μm−2 (red diamonds) is shown in (a). For low
momenta, we find a near unity occupation that is independent of
the in situ density (see the inset), which is direct evidence of Pauli
blocking. The Fermi wave vectors deduced from Fermi fits to the
distribution agree well with the kF;n̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn̄2D;↑
p

(vertical lines)
calculated from the in situ density. An image of the momentum
distribution of an attractively interacting Fermi gas is shown in
panel (b) and a cut through the distribution in panel (c). The
Fermi momentum kF;n̄ for a noninteracting gas with equal density
is indicated by the red circle (b) and the vertical red line (c),
respectively.

PHYSICAL REVIEW LETTERS 120, 060402 (2018)

060402-4



measurement of the momentum distribution of an interact-
ing Fermi gas can be extended to analyze momentum
correlations [54] and thereby observe Cooper pairs in a
fermionic superfluid.
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