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We show how experimentally available bilayer lattice systems can be used to prepare quantum many-
body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This
disentangling operation moves one layer—subsystem A—into a regime where excitations in A develop a
single-particle gap. As a result, this operation maps directly to cooling for subsystem A, with entropy being
shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics
showing that disentangling can be realized cleanly in ongoing experiments. The corresponding
entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for
producing lower-entropy states, this technique opens a range of applications beginning with simplifying
production of magnetically ordered states of bosons and fermions.
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Understanding entanglement inmany-body systems [1,2]
provides a new way to study various phenomena, from
identifying topological states [3–6] to characterizing out-of-
equilibrium quench dynamics and fundamental issues such
as thermalization [7,8]. Entanglement measures in many-
body systems can be directly accessed in experiments, as
was recently demonstrated for Rényi entropies of itinerant
atoms in an optical lattice [9–11]. In the present work, we
show how the dynamical manipulation of entanglement for
atoms in bilayer optical lattices could be used to address a
key experimental challenge: Based on processes that result
in a dynamical disentangling of two layers within a bilayer
optical lattice at low temperatures, as shown in Fig. 1, it is
possible to transfer most thermal entropy into one of the two
layers. Further adiabatic manipulation of the low-entropy
layer then makes a broad range of presently unachievable
low-temperature phenomena accessible. The required con-
trol over the lattice potential is readily available in experi-
ments with optical superlattices [12,13] or quantum gas
microscopes [14].
The first milestone in this direction would be the

simplified preparation of quantummagnetic ordering driven
by superexchange processes, which is challenging due to the
small energy gaps involved [15–17]. Seminal recent experi-
ments detecting antiferromagnetic (AFM) correlations for
atoms in optical lattices [18,19] demonstrated entropies
within a factor of 2 of that required for the Néel transition.
Further progresswasmadewith individual site addressing in
quantum gas microscopes [20–23], revealing magnetic
correlations in 2D. However, with the eventual goal of
observing effects that require much lower temperatures still
[24,25], it is imperative to develop new ways to strongly
reduce the entropy. We show below that our scheme could

reduce entropies bymore than an order ofmagnitude starting
from initial states attainable in current experiments.
Below, we first provide a comprehensive explanation of

dynamical disentangling, with examples in low-entropy
state preparation for single- or multicomponent bosons
with gapped excitation spectra, the latter of which are
especially relevant for the study of magnetic ordering in
ultracold atomic lattice gases [15,26–30]. We then discuss
combining this scheme with further adiabatic ramps,
allowing applications to ungapped systems, with examples
from two-component fermions.
A bilayer setup for dynamical disentangling.—Here we

introduce the concept of dynamical disentangling of two
subsystems by considering bosons in a bilayer optical lattice,
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B

FIG. 1. Dynamical disentangling in bilayer systems: the exam-
ple of single-component bosons. (a) Two tunnel-coupled layers
(with interlayer tunneling Jp) are prepared at the same chemical
potential (identical trap depths in the vertical direction). Particles
are delocalized between the layers, which are entangled at zero
temperature. By manipulating the relative trap depth of the layers
and then removing the tunnel coupling, layer A can be prepared in
a Mott-insulating state. Having a gapped state in layer A strongly
suppresses entanglement of the two layers at zero temperature. At
nonzero temperatures, the entropy per particle is much higher in
layer B, where atoms are free to move.
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shown schematically in Fig. 1. For atoms in the lowest Bloch
bands in each layer, under well-controlled approximations
theHamiltonian is a (multicomponent) Bose-Hubbardmodel
[31–33], H ¼ HA þHB þHc, where (ℏ≡ 1)

HX ¼ −
X

hl;ki;σ
Jσb

†
lσXbkσX þ V

X

l

nl↑Xnl↓X

þ
X

l;σ¼↑;↓

Uσ

2
nlσ;XðnlσX − 1Þ;

HcðtÞ ¼
X

l;σ

½−JσpðtÞðb†lσAblσB þ H:c:Þ − ΔμσðtÞnlσA�:

Here we consider two layers X ∈ fA; Bg and up to two
components, labeled σ ¼ ↑, ↓, corresponding to either
separate species or different internal states of the same
atomic species. The operator b†lσX creates a boson on site l
and species σ in layer X, JσpðtÞ denotes interlayer tunneling,
andΔμσðtÞ is a global energy shift between the layers.Within
each layer, nlσ;X ¼ b†lσ;Xblσ;X, the tunneling amplitude is Jσ,
the on-site interaction within one component is Uσ and
between components is V. We denote time as t, with T used
for total times of parameter ramps (linear in t unless
specified).Wheremultiple parameters are ramped separately,
we write TðPÞ, where P ∈ fJσp;Δμσg; Uσ; V. We first
illustrate the scheme using single-component bosons and
then extend this to the two-component magnetically
ordered case.
Disentangling bilayer systems in the static limit.—

Choosing the number of particles N to be fewer than the
sum of lattice sites of both layers,M ≡MA þMB, then for
Δμ ¼ 0 the zero-temperature ground state will involve
atoms delocalized between the two layers. This results in
entanglement of the two subsystems corresponding to layers
A andB, even forU ¼ 0. Thus, even though the total system
is in a pure state with entropy S≡ −Trfρ log ρg ¼ 0, the
entropy of the reduced subsystem for layer A, SA ≡
−TrfρA log ρAg, will be nonzero, SA > 0, where ρ is the
density matrix for the whole system and ρA ¼ TrBfρg
[9,34]. We now consider what happens at weak interlayer
coupling, Jp → 0. Increasing the difference in chemical
potential between the layers,Δμ, we can favor the transfer of
particles to layer A. As depicted schematically in Fig. 1 and
in the mean-field phase diagram [inset in Fig. 2(a)], for
sufficiently large U=J, layer B remains in a superfluid (SF)
regime at zero temperature, while A enters a gapped Mott
insulator (MI) regime. At zero temperature, the gap sup-
presses excitations in layerA, and, for Jp → 0, that layerwill
be in its ground state. Contributions fromother states in layer
A are suppressed by the excitation gap, and SA is also
suppressed, as mostly just one state of subsystem A
contributes to the ground state of the whole system.
At nonzero temperatures, the subsystem entropy per

particle SA=NA (NX ≡P
lhnl;Xi) consists of both thermal

and entanglement entropy [9,35]. As an example, we

calculate this via exact diagonalization (ED), as shown
in Fig. 2(a) as a function of entropy per particle of the
whole system S=N in 1D, with eight particles in 12 lattice
sites (MA;B ¼ 6). When S=N is large, layer A is indeed
measurably entangled with layer B, but, as S=N is reduced,
the entropy is almost entirely transferred to layer B, as SA is
strongly suppressed. At zero temperature, S → 0, we see
directly the suppression of entanglement between the layers
by comparing the black stars, which show SA for Δμ ¼ 0
with the other curves, where Δμ ¼ U=2, and SA → 0 as
S → 0. This approach generalizes straightforwardly to two-
component bosons with magnetic ordering. Considering a
system with Uσ ≫ V ≫ J↑ > J↓ guarantees that both
charge and spin excitations of the magnetic order at
commensurate filling are gapped [36], which is critical.
Calculations (ED) for a system with MA;B¼5, N↑;↓¼4,
V=J↓¼10 J↑=J↓¼3, show that for the range of Δμσ
corresponding to integer numbers hNσ;Ai and hðN↑;Aþ
N↓;AÞi¼MA an AFM order forms in layer A, while SA is
once more strongly suppressed [see Fig. 2(b)]. SA=NA is
suppressed exponentially with the size of the smallest gap
in subsystem A. We find that S=N and SA=NA decay
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FIG. 2. Equilibrium entropies in the limit Jp, Jσp → 0. (a) En-
tropy per particle SA=NA in layer A of a 1D bilayer system of
length 6 with eight spinless bosons, as a function of total entropy
per particle, S=N. Black stars and a fitted dotted line show the
case where U=J ¼ 5 and Δμ ¼ 0, demonstrating nonzero en-
tanglement of the two layers at zero temperature. Remaining
points show target parameters for dynamical disentangling, with
Δμ ¼ U=2. Blue crosses denote U=J ¼ 8 (βJ ∈ ½0.1; 1.5�), red
squares U=J ¼ 20 (βJ ∈ ½0.1; 2�), and green circles U=J ¼ 50
(βJ ∈ ½0.1; 1�). For large U=J, SA=NA is strongly suppressed for
low S=N. Inset: The zero-temperature mean-field phase diagram
for the Bose-Hubbard model in the local density approximation,
showing two superfluid layers with less than unit filling (central
diamond) being separated in chemical potential so that one
becomes Mott insulating and the other remains superfluid (upper
and lower diamonds). (b) SA=NA of a 1D bilayer system of
length 5 with four spin-up and four spin-down lattice bosons with
U↑;↓ → ∞, V ¼ 10J↓, as a function of S=N (βJ↓ ∈ ½1; 20�;
purple stars). As J↑ ¼ 3J↓, Δμ↑ ¼ 8.5J↓, and Δμ↓ ¼ 5J↓, layer
A realizes gapped AFM order with exactly five bosons with a
large charge and a small spin gap. Again, SA=NA is strongly
suppressed at low S=N (see the text). For comparison, we show
the results from (a) with U=J ¼ 20 and plot SA=NA ¼ S=N in
black. We include maximally four bosons per site in our
calculations.
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exponentially with inverse temperature for small and
moderate temperatures, so that SA=NA ∝ ðS=NÞ−γ (with
γ parameter dependent), as shown in Fig. 2(b) [37].
The intuitive picture for disentangling requires a non-

trivial justification when Jp, Jσp ≠ 0. This coupling could
conceivably result in long-range correlations in layer A
through layer B, such that we no longer have a decoupled
MI or AFM state. It is of central importance to know
whether the coupling along the boundary between the
layers can involve exponentially many states at nonvanish-
ing weight, which would result in a large entanglement.
However, we can show that indeed the resulting entangle-
ment is small [37], as the number of states participating
scales linearly and not exponentially in MA, and scales to
zero with Jσp=δ, whenever Hc is local and generates only
single-particle excitations in layer A. Here, δ is the smallest
gap to single-particle excitations in A. This gap is assumed
to be finite, even in the thermodynamic limit, in the final
state of A. More complex still are questions concerning the
dynamics: As the whole system is initially ungapped (and
layer B is always ungapped), we need to check whether
dynamical ramps can still produce low-entropy states in
layer A. In the following, we treat examples of the dynamics
that show it is possible to perform these ramps adiabatically
at zero temperature for finite systems and that, at nonzero
temperature, the vast majority of the entropy is still trans-
ferred to layer B even if the ramp is not adiabatic.
Time dependence of dynamical disentangling.—We first

investigate the adiabaticity of a ramp with single-compo-
nent bosons delocalized over two layers into a disentangled
state at zero temperature. In Fig. 3(a), we plot the final
many-body-state fidelities when considering two coupled
1D chains, where the dynamics is computable using
adaptive time-dependent density matrix renormalization
group techniques [38–42]. We see that for relatively short
ramps, with a time scale T ≈ 20 J−1, the fidelity FðTÞ ¼
jhψðTÞjψ targetij2 of the final state of the ramp with Jp → 0
and Δμ ¼ U=2, ψ target to the time-evolved state jψðTÞi is
almost one.
At nonzero temperatures, the ramp will never be entirely

adiabatic. However, if it is sufficiently slow and the layers
can thermalize, we expect that excitations primarily appear
in layer B, where they are ungapped, with the gapped final
state in layer A still protected. This can be enhanced if we
ensure optimal conditions for thermalization between the
layers during the ramp. To demonstrate this, we show in
Fig. 3(b) the final per-particle entropy of layer A,
ðSA=NAÞfinal, as a function of the initial per-particle entropy
ðS=NÞinitial at a finite temperature, for a small system that
permits calculations via ED. We note that ðSA=NAÞfinal=
ðS=NÞinitial is strongly suppressed and that, even with the
moderate ramp times ∼100 J−1, it is possible to obtain
ðSA=NAÞfinal lowered by an order of magnitude over the
ðS=NÞinitial. Because we expect some degree of nonadia-
baticity, the final entropy depends in general on the choice

of ramp. We compare two ramps, one with U=J ¼ 20 fixed
throughout the ramp and one in which U=J is small
initially. The latter case promotes thermalization between
the layers and results in a substantially lower value for
ðSA=NAÞfinal. This strategy can then be repeated, with
comparable performance, for spinful bosons to produce
magnetically ordered states in layer A, as also depicted in
Fig. 3(b).
Adiabatically connecting low-entropy disentangled

states to broader classes of many-body interacting sys-
tems.—When the state of the low-entropy layer exhibits a
very small (or only finite-size) gap, we can find a related
state with a larger gap for dynamical disentangling and then
adiabatically connect this to the final target state. For
example, to achieve magnetic ordering for multicomponent
bosons and fermions when J↑ ¼ J↓, when there is no spin
gap, we can first introduce a spin gap and then adiabatically
remove it in a second step. We give an example for
fermions in the Hubbard model that should simplify the
process of achieving these states with low entropies—
which are both of acute experimental interest [20–23] and
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FIG. 3. Time-dependent disentangling. (a) At zero temperature,
the fidelity of the final state of the ramp to the ground state of the
system with Δμ ¼ U=2, and then to Jp ¼ 0, against total ramp
time T (measured in units of J−1), computed using time-
dependent density matrix renormalization group techniques for
up to M ¼ 16 × 2 lattice sites, always taking N ¼ 3M=4 bosons
atU ¼ 8J. We begin in the ground state withΔμ ¼ 0 and Jp ¼ J,
ramp linearly in time to Δμ ¼ U=2, and then to Jp ¼ 0. (b) At a
finite temperature, SA=NA at the end of the ramp in a 1D
bilayer system with M ¼ 5 × 2 for spinless bosons with N ¼
7 and T ¼ 96 J−1 (blue crosses and magenta diamonds), with
Δμ∶ 0 → 10J in TðΔμÞ ¼ 92 J−1, followed by Jp∶ J → 0 within
TðJpÞ ¼ 4 J−1. The blue crosses show a ramp with U initially
kept at a low constant value U ¼ J for a time 30 J−1 and
subsequently U∶ J → 20J within TðUÞ ¼ 62 J−1. Magenta dia-
monds show the same protocol, but with U ¼ 20J kept constant
throughout. Green squares show the first type of ramp
again, but for two-component bosons, N↑;↓ ¼ 4 and
T ¼ 100 J−1. This ramp into an antiferromagnetic state with
gaps to both charge and spin excitations uses J↑ ¼ 3J↓,
U↑;↓ ¼ ∞, with Δμ↑∶ 0 → 8.5J↓, Δμ↓∶ 0 → 5J↓ with
TðΔμ↑;↓Þ ¼ 50 J−1↓ . In parallel, V is kept initially at value ¼
J↓ over time span 15 J−1↓ , after which V∶ J↓ → 10J↓ with
TðVÞ ¼ 35 J−1↓ . Afterwards, J↑p∶ 3J↓ → 0, J↓p∶ J↓ → 0, with
TðJ↑;↓p Þ ¼ 50 J−1↓ , thereby accounting for the small gap to spin
excitations in layer A. For all shown calculations, maximally four
bosons per site have been allowed.
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important as starting states for investigating dynamical
processes and thermodynamics for systems doped away
from half filling.
We again consider spinful Hamiltonians H ¼ HAþ

HB þHc, only now all operators are fermionic, and we
assume J↑ ¼ J↓. To have a spin gap opening in layer A in
the critical stage in whichΔμσ is ramped to its final nonzero
value, we consider the dimerized lattice geometry that was
recently realized by Greif et al. [18] and is depicted for a
1D case in Fig. 4(a). In equilibrium, Ref. [18] demonstrated
the redistribution of entropy with a chemical potential,
which makes it an excellent candidate for our bilayer
disentangling scheme.
In Fig. 4(b), we show the scheme efficiency, checking

the adiabaticity of a chemical potential ramp in this
dimerized lattice, analogous to Fig. 3(a) for bosons.
Commencing at less than half filling for the whole system,
we produce a half filled layer A with spin singlets in each
dimer. To characterize this final state, we use the local
dimer correlation functions as a measure of the final state
quality. For all tested system sizes L ¼ 8 (blue circles),
L ¼ 16 (red squares), and L ¼ 32 (green diamonds), this
scheme exhibits power-law scaling to such low values that

it represents near-perfect spin singlets being prepared on
each dimer in layer A. Based on the results of strong-
coupling expansions in Ref. [18] and ED calculations, we
see that the potential reduction in entropy is similar to that
seen for spinful bosons in Fig. 2(b). At current experi-
mental entropies, this would allow reductions of the order
of a factor of 2 for easier entry into magnetically ordered
states, with much larger reductions possible for lower
entropy starting points.
As indicated in Fig. 4(c), we then consider the low-

entropy layer A, produced above, as a starting point for
realizing a state with long-range antiferromagnetic order by
increasing the coupling between dimers time dependently,
analogous to Ref. [43]. Initially, one has prepared one up-
and one down-spin fermion with U=J ≫ 1 on each pair of
sites with tunneling amplitude J between them in their
ground state (i.e., the unique singlet state), while interdimer
tunneling JID is at or near zero. Ramping J1D up to J near
adiabatically should result in a smooth crossing over to the
desired AFM ground state of the Hubbard model at half
filling, as one is initially protected against coupling to
excited states by the finite spin gap. In Fig. 4(d), we
demonstrate that this is the case, plotting one minus the
fidelity against the total ramp time after an exponential ramp
(see the figure caption). We conclude that the low-entropy
dimer state achievable through dynamical disentangling can
then be used to prepare a long-range antiferromagnet.
Summary and outlook.—For realistic experimental time

scales and low initial entropies, bilayer disentangling
should further suppress the entropy in a single layer by
up to an order of magnitude, providing an excellent starting
point for adiabatically preparing many-body states. The
entropy transfer has advantages over entropy redistribution
across a surface [44,45], as here the interlayer boundary is
equal to the layers in size, and it is easy to isolate the high-
entropy layer. This scheme could also be implemented
using multiple internal states of atoms rather than spatial
bilayer geometries, and the disentangling could be opti-
mized by applying quantum control methods. One can
further ask whether dynamical disentangling could work
for a wider class of systems, opening formal questions in a
quantum information context.

We thank Daniel Greif, Markus Greiner, Alex Ma,
Marco Piani, and Jon Simon for stimulating discussions.
This work was supported in part by AFOSR Grant
No. FA9550-12-1-0057, by the EOARD via AFOSR
Grant No. FA2386-14-1-5003, by AFOSR MURI
FA9550-14-1-0035, and by the European Union Horizon
2020 collaborative project QuProCS (Grant Agreement
No. 641277). A. K. was supported through a Nordita
Fellowship.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.
Phys. 80, 517 (2008).

101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

100

101 102 103
10-5

10-4

10-3

10-2

10-1

100

(a) (c)

(b) (d)

FIG. 4. (a) Bilayer disentangling for a dimerized lattice: Layers
A and B are connected with tunneling Jp. In each layer, we have
alternating tunneling amplitudes J and JID. (b) Characterization
of spin singlets produced from fermions on sites with tunneling J
in from (a), with initial parameters Jp ¼ J, JID ¼ 0, and
Δμ↑;↓ ¼ 0, ramping to Δμ↑;↓ ¼ U=2 in time T and then to Jp ¼
0 in time T. We show the difference of the average correlation
over all dimers in A ¯hSþi S−iþ1i at the end of the ramp to the value
on a single dimer with one spin-up and spin-down fermion, for
system sizes L ¼ 8 (blue circles), L ¼ 16 (red squares), and L ¼
32 (green diamonds). Here, U=J ¼ 8 and N↑ ¼ N↓ ¼ 3L=4.
(c) Schematic overview of antiferromagnetic state preparation
starting from the final state of (b) (isolated pairs of singlets) and
adiabatically increasing tunneling between dimers. (d) Plot of
1 − FðTÞ for fidelities FðTÞ at the end of a ramp of time scale T,
where J1D is increased from J1D ¼ 0 to J1D ¼ J, with ramp
function 1 − ðe−νt − e−νTÞ=ð1 − e−νTÞ, ν ≔ T=10. We show re-
sults for U=J ¼ 8, for system sizes L ¼ 8, L ¼ 16, and L ¼ 32
[symbols as for (b)].

PHYSICAL REVIEW LETTERS 120, 060401 (2018)

060401-4

https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517


[2] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82,
277 (2010).

[3] H.-C. Jiang, Z. Wang, and L. Balents, Nat. Phys. 8, 902
(2012).

[4] S. V. Isakov, M. B. Hastings, and R. G. Melko, Nat. Phys. 7,
772 (2011).

[5] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404
(2006).

[6] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405
(2006).

[7] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R.
Schittko, P. M. Preiss, and M. Greiner, Science 353, 794
(2016).

[8] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)
452, 854 (2008).

[9] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M.
Rispoli, and M. Greiner, Nature (London) 528, 77 (2015).

[10] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller,
Phys. Rev. Lett. 109, 020505 (2012).

[11] C. M. Alves and D. Jaksch, Phys. Rev. Lett. 93, 110501
(2004).

[12] S. Folling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A.
Widera, T. Muller, and I. Bloch, Nature (London) 448, 1029
(2007).

[13] P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley,
W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 99, 020402
(2007).

[14] P. M. Preiss, R. Ma, M. E. Tai, J. Simon, and M. Greiner,
Phys. Rev. A 91, 041602 (2015).

[15] B. Capogrosso-Sansone, Ş. G. Söyler, N. V. Prokof’ev, and
B. V. Svistunov, Phys. Rev. A 81, 053622 (2010).

[16] T.-L. Ho and Q. Zhou, Phys. Rev. Lett. 99, 120404 (2007).
[17] R. Jördens et al., Phys. Rev. Lett. 104, 180401 (2010).
[18] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T.

Esslinger, Science 340, 1307 (2013).
[19] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E.

Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G.
Hulet, Nature (London) 519, 211 (2015).

[20] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo, L.
Pollet, I. Bloch, and C. Gross, Science 353, 1257 (2016).

[21] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif,
and M. Greiner, Science 353, 1253 (2016).

[22] L.W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and
M.W. Zwierlein, Science 353, 1260 (2016).

[23] P. T. Brown, D. Mitra, E. Guardado-Sanchez, P. Schauß,
S. S. Kondov, E. Khatami, T. Paiva, N. Trivedi, D. A. Huse,
and W. S. Bakr, Science 357, 1385 (2017).

[24] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267
(2012).

[25] J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012).
[26] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,

100401 (2003).
[27] A. Isacsson, M.-C. Cha, K. Sengupta, and S. M. Girvin,

Phys. Rev. B 72, 184507 (2005).
[28] M. Guglielmino, V. Penna, and B. Capogrosso-Sansone,

Phys. Rev. A 84, 031603 (2011).
[29] F. Cattani, C. Gross, M. K. Oberthaler, and J. Ruostekoski,

New J. Phys. 15, 063035 (2013).
[30] W. Wang, V. Penna, and B. Capogrosso-Sansone, New J.

Phys. 18, 063002 (2016).
[31] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold

Atoms in Optical Lattices: Simulating Quantum Many-Body
Systems (Oxford University, New York, 2012).

[32] D. Jaksch and P. Zoller, Ann. Phys. (Amsterdam) 315, 52
(2005).

[33] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P.
Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[34] M. R. Dowling, A. C. Doherty, and H. M. Wiseman, Phys.
Rev. A 73, 052323 (2006).

[35] H. Pichler, L. Bonnes, A. J. Daley, A. M. Läuchli, and P.
Zoller, New J. Phys. 15, 063003 (2013).

[36] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, New
J. Phys. 5, 113 (2003).

[37] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.060401 for details.

[38] U. Schollwoeck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[39] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[40] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[41] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech. (2004) P04005.
[42] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143

(2008).
[43] M. Lubasch, V. Murg, U. Schneider, J. I. Cirac, and M.-C.

Bañuls, Phys. Rev. Lett. 107, 165301 (2011).
[44] J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier,

C. Salomon, and M. Köhl, Phys. Rev. A 79, 061601 (2009).
[45] M. P. Zaletel, D. M. Stamper-Kurn, and N. Y. Yao,

arXiv:1611.04591.

PHYSICAL REVIEW LETTERS 120, 060401 (2018)

060401-5

https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1038/nphys2465
https://doi.org/10.1038/nphys2465
https://doi.org/10.1038/nphys2036
https://doi.org/10.1038/nphys2036
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature15750
https://doi.org/10.1103/PhysRevLett.109.020505
https://doi.org/10.1103/PhysRevLett.93.110501
https://doi.org/10.1103/PhysRevLett.93.110501
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1103/PhysRevLett.99.020402
https://doi.org/10.1103/PhysRevLett.99.020402
https://doi.org/10.1103/PhysRevA.91.041602
https://doi.org/10.1103/PhysRevA.81.053622
https://doi.org/10.1103/PhysRevLett.99.120404
https://doi.org/10.1103/PhysRevLett.104.180401
https://doi.org/10.1126/science.1236362
https://doi.org/10.1038/nature14223
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2275
https://doi.org/10.1103/PhysRevLett.90.100401
https://doi.org/10.1103/PhysRevLett.90.100401
https://doi.org/10.1103/PhysRevB.72.184507
https://doi.org/10.1103/PhysRevA.84.031603
https://doi.org/10.1088/1367-2630/15/6/063035
https://doi.org/10.1088/1367-2630/18/6/063002
https://doi.org/10.1088/1367-2630/18/6/063002
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevA.73.052323
https://doi.org/10.1103/PhysRevA.73.052323
https://doi.org/10.1088/1367-2630/15/6/063003
https://doi.org/10.1088/1367-2630/5/1/113
https://doi.org/10.1088/1367-2630/5/1/113
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.060401
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.107.165301
https://doi.org/10.1103/PhysRevA.79.061601
http://arXiv.org/abs/1611.04591

