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How can dense biological tissue maintain sharp boundaries between coexisting cell populations? We
explore this question within a simple vertex model for cells, focusing on the role of topology and tissue
surface tension. We show that the ability of cells to independently regulate adhesivity and tension, together
with neighbor-based interaction rules, lets them support strikingly unusual interfaces. In particular, we
show that mechanical- and fluctuation-based measurements of the effective surface tension of a cellular
aggregate yield different results, leading to mechanically soft interfaces that are nevertheless extremely
sharp.
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The process of compartmentalizing different cell pop-
ulations and maintaining those boundaries is of vital
importance in processes ranging from early embryonic
development to tumor metastasis [1,2]. A common para-
digm, the differential adhesion hypothesis, treats each cell
population as an immiscible fluid and suggests that cell
sorting and compartmentalization are driven by an effective
surface tension [3], which is in turn governed by a
competition between the repulsive and adhesive inter-
actions between cells. The precise cellular mechanisms
that govern effective surface tension are still under debate;
some investigations suggest it is dominated by adhesive
interactions [4], while others implicate actomyosin con-
tractility [5] or a coregulation of these two effects [1,6,7].
It is not even clear that different methods for measuring the
effective surface tension should yield consistent results,
which could explain discrepancies between observations
and lead to nontrivial and unexpected dynamics for cell
sorting and compartmentalization.
One hint that something interesting may be happening is

a set of experiments demonstrating that many tissues can
support extremely sharp boundaries between compartments
or coexisting cell populations [1,8–12]. Here we present a
possible explanation for these observations based only on
the assumption that cells interact mechanically with touch-
ing neighbors, and that they might regulate these inter-
actions differently with “unlike” cells.
For simplicity, our work focuses on models for single

layers of confluent cells, with no cellular gaps or overlaps.
2D vertex models represent confluent monolayers as a
polygonal tiling of space where each polygon corresponds
to a cell [13–15]; Voronoi models, which we study here,
specialize this idea by taking the cell shapes to be given by
a Voronoi tessellation of the cell positions. Vertex and
Voronoi models explicitly treat mechanical interactions
between neighboring cells, and have successfully been
used to model many biophysical processes [12,16–18],

ranging from embryonic development to wound healing to
tumor metastasis [19–23]. We include an additional inter-
facial tension between different cell types to mimic the
mechanical changes that are known to occur at so-called
“heterotypic” contacts. This extra term naturally leads to a
mechanism for robust cell compartmentalization.
Surprisingly, we find that this model has a large

discrepancy in different macroscopic measurements of
the effective surface tension between coexisting cell pop-
ulations. Specifically, we demonstrate that mechanical
measurements and measurements based on the spectrum
of interfacial fluctuations, which are equivalent in equilib-
rium particulate matter, are not equivalent in this system.
This difference allows tissues to support mechanically soft
interfaces that nevertheless are sharper than a fraction of a
cell diameter. This result is a direct consequence of the
topological nature of cellular interactions.
We begin by writing down a dimensionless form of the

vertex model, a commonly used energy functional describ-
ing cells in terms of their preferred geometry. Although
cells themselves are 3D objects, the 2D vertex model
projects these shapes onto the plane and maps the combi-
nation of cell volumetric incompressibility and the mono-
layer’s resistance to height fluctuations into a term
quadratic in the cross-sectional area of each cell [19].

e ¼
XN

i¼1

½kAðai − a0Þ2 þ ðpi − p0Þ2� þ
X

hiji
δ½i�;½j�γijlij: ð1Þ

This energy depends on the area ai and perimeter pi of each
of the N cells, indexed by i. The unit of length is defined
such that the average cell area haii ¼ 1. The parameter kA,
which we set to unity, controls the cell area stiffness relative
to the perimeter stiffness. The preferred values for cell
area and perimeter are a0 and p0, respectively. The second
sum in Eq. (1) introduces an explicit additional interfacial
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tension between unlike cells [24]. The sum is over all
edges, lij, between cells i and j; the delta function is equal
to unity if the “type” of cells i and j are different, and zero if
they are the same.
Biologically, γij could arise from spatial reorganization of

cadherins and cortical tensions, as well as the generation of
acto-myosin cables at cell aggregate boundaries [1]. For
simplicity, we assume that the value of the additional tension
is the same, γij ¼ γ0, for all such interfaces. We set a0 ¼ 1

and choosep0 to focus on a parameter regimewhere the bulk
has diffusive, fluidlike dynamics (p0 > 3.81) [25]. To isolate
the effect of these heterotypic interfaces, we further assume
that “unlike” cells are otherwise identical.
There is considerable debate about the dynamical rules

that best represent the motion of cells, which are funda-
mentally out of equilibrium. We emphasize that the unusual
interfacial properties we report below do not depend on
the precise details of the equations of motion governing
the system. To make this point, we carry out simulations
[26,27] both in and out of equilibrium. We present
equilibrium data using overdamped Brownian dynamics
at temperature T. To model out-of-equilibrium dynamics,
we adopt those in self-propelled particle models [28],
where each cell tries to move along a polarization vector
with self-propulsion speed v0. The polarization vector
rotates with a diffusion constant Dr [24,25,29]. The data
we present here are restricted to a modestly out-of-
equilibrium regime with 0.025 ≤ v0 ≤ 0.1 and 0.1 ≤
Dr ≤ 10, and we will define Teff ¼ v20=2Dr simply to
facilitate comparisons between the dynamical schemes
and display them on the same plots.
We first probe the effective surface tension of a cell

droplet by numerically implementing a parallel-plate com-
pression experiment, a popular technique in biological
systems [30,31]. This method measures surface tensions
using only the geometry of a deformed droplet and the
forces exerted, i.e., without needing to measure fluid
viscosities. A schematic diagram is shown in Figs. 1(a)
and 1(b). Although often interpreted in terms of pressure
differences across the droplet interface via the Young-
Laplace equation [31–33], the force needed to maintain the
plates at fixed spacing can be understood by first assuming
an energy given by an effective interfacial tension γ times
the perimeter of the droplet, and then taking the derivative
of that expression. We fit the droplet shape to an ellipse
with major and minor axes given by 2R1 andH in Fig. 1(b),
and take an analytic derivative of the perimeter of the
ellipse with respect to H.
A sample initial configuration, showing a droplet of

1250 “type A” cells immersed in fluid of 3400 “type B”
cells, is displayed in Fig. 1(a). The plates, composed of
externally forced cells with plate-cell interactions identical
to the cell-cell interactions, are moved together at a constant
velocity over a brief time window and then held at a fixed
distance apart. The transient behavior of the force on the

plates during the deformation contains rich physical infor-
mation, and it is well known that cell aggregates and
cellular foams have complicated rheological behavior.
Without a detailed viscoelastic model combining viscous
effects and plastic cellular rearrangements, one can easily
overestimate the value of the surface tension when exam-
ining the decay of the transient towards its long-time
plateau [34,35]. Thus, we focus on the long-time limit
of the external force needed to maintain the droplet in its
final ellipsoidal configuration. As seen in Fig. 1(c), we find
an effective surface tension consistent with the value
imposed microscopically in the model.
We next probe the effective surface tension by measuring

the spectrum of fluctuations at an interface. One common
method of extracting the surface tension of a fluid phase
boundary is to look at the structure and dynamics of
capillary waves [36,37]. In equilibrium simulations this
is straightforward, as one can directly connect the inter-
facial roughness to the effective surface tension using
standard techniques [36,38].
Assuming that the Fourier spectrum of the interface has

independent, Gaussian, equipartitioned modes, each height
mode hq has magnitude hjhqj2i ¼ ½kT=ðγLyq2Þ�, where Ly
is the linear system size. The size of the periodic box sets
the range of accessible wave vectors q ¼ 2πn=Ly for n ¼ 1

(a)

(c)

(b)

FIG. 1. The effective interfacial tension measured by parallel
plate compression matches the imposed microscopic tension.
(a) Snapshot of a droplet of cells at the beginning of a parallel
plate compression simulation. (b) Geometric quantities used to
compute the effective surface tension, as described in the main
text or via the Young-Laplace law. (c) Measured surface tension
normalized by γ0 as a function of p0. Circles, squares, diamonds,
and triangles correspond, respectively, to γ0 ¼ 0.05, 0.1, 0.2, and
0.4, with v0 ¼ 0.1 and Dr ¼ 10. These data are representative of
our results for all simulations performed. Inset: Example of the
mean force in the y direction on lower plate, shown on a
logarithmic scale, as a function of time.
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to∞. The mean interfacial width is w2 ¼ P
qhjhqj2i, which

gives

w2 ¼ w2
0 þ

kTLy

12γ
; ð2Þ

where w2
0 captures the contribution of the q ¼ 0 mode. We

simulate square domains where Ly changes by an order of
magnitude, and estimate w for particular configurations by
fitting the density profile of the strip to a hyperbolic tangent
[36,38]. We then extract the effective surface tension by
evaluating the growth of the interfacial width using Eq. (2).
In the cellular models this expected behavior breaks

down entirely, both in the scaling with system size and the
scaling with wave vector. The majority of our data use the
Voronoi model described above, but the open squares in
Fig. 2 are simulations of a 2D vertex model; see the
Supplemental Material for details [39]. The inset to Fig. 2
shows a sample strip geometry, where visual inspection
suggests that the segregation between the cell types is very
sharp. This impression is confirmed by Fig. 2, where we
plot the extracted interfacial width as a function of system
size normalized by the imposed microscopic tension. For
comparison, we also plot a lower bound (with w0 ¼ 0) on
the w2 value expected for an equilibrium system based on
our mechanical measurement. Focusing first on the equi-
librium system given by the green squares, we see the width
is more than an order of magnitude smaller than expected.
Naively fitting the data would lead to an implied value of

γ nearly 2 orders of magnitude larger than γ0, but we
emphasize that our simulation data do not cleanly fit to the

form of Eq. (2). Simulations with nonequilibrium dynamics
are labeled with diamonds and circles. Although these
systems are still an order of magnitude sharper than
expected, the nonequilibrium dynamics do broaden the
interface. This is consistent with observations in self-
propelled particle systems [38,43], and is an interesting
avenue for future research.
This reduction in the scale of interfacial fluctuations can

be understood as a direct consequence of the topological
nature of the interaction rules in these cell models. In
particular, even though the energy is a continuous function
as cell rearrange, there are discontinuous changes in the
force whenever cells exchange neighbors. At an interface
these discontinuous forces suppress fluctuations, pinning
cells to the boundary and sharply compartmentalizing the
cells. These forces can be analytically calculated for
simplified geometries, as we show in the Supplemental
Material for a square lattice of cells [39].
In contrast to homogeneous vertex models, where in the

fluid phase fourfold vertices are generically unstable [44],
we predict that in the presence of inhomogeneous line
tensions (such as those we consider in this work) some
geometric configurations around fourfold vertices are
stable. Although not commented upon, fourfold vertices
can been seen in, e.g., the vertex-model-simulation images
of Ref. [9]. This argument becomes slightly more compli-
cated in the Voronoi model, as at higher values of p0 the
Voronoi constraints can stabilize fourfold vertices even in
the bulk [29,45]. Nevertheless, we expect to see an
enhancement of fourfold stabilized vertices at the interface
in Voronoi models as well.
At finite effective temperatures these fourfold vertices

will transiently resolve into threefold vertices separated by
a short edge. Therefore, we test our predictions by
comparing the distribution of edge lengths li in the bulk
and along the interface between two cell types. Figure 3
shows the bulk distribution (black dashed line) and the
interfacial distribution for a wide range of imposed tensions
(solid lines). For any value of applied tension we see a clear
enhancement of very short interfacial edges with respect to
the bulk distribution, indicating that the Voronoi tessella-
tion is approximating an excess population of fourfold
vertices. As shown in the inset to Fig. 3, for very short
edges we see that the interfacial edge length distribution is
approximately exponential, with a decay length lp, con-
sistent with simple energetic considerations based on γ0
and Teff .
We next show that the near-fourfold vertices in the

disordered geometries in our simulations give rise to
discontinuous restoring forces that suppress fluctuations
of the interface. We quantify this by systematically dis-
placing each cell at the interface and measuring the
restoring force, as described in more detail in the
Supplemental Material [39]. This measures the forces in
the underlying energy landscape, which we show in the
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FIG. 2. Interfaces are much sharper than expected based on the
imposed microscopic tension. Normalized growth of the inter-
facial width w as a function of the size of the periodic simulation
domain Ly. Solid green squares refer to an equilibrium system at
the same Teff as the orange diamonds, which are the self-
propelled cell model with v0 ¼ 0.1, Dr ¼ 1. Blue circles refer
to an active system with v0 ¼ 0.1, Dr ¼ 0.1. Open green squares
refer to 2D vertex model simulations with the same parameters as
the Voronoi simulations represented by solid green squares. The
dashed red line is the expected scaling based on the standard
capillary wave argument using γ ¼ γ0 ¼ 0.01 as the interfacial
tension and w0 ¼ 0. Inset: Sample image of two cell types in a
strip geometry.
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inset to Fig. 4. At a particulate interface governed by
adhesive interactions one would expect a springlike restor-
ing force proportional to the magnitude of the displace-
ment. Instead, we find that the mean force is nearly
independent of the displacement over orders of magnitude,
and that it is proportional to the applied γ0, precisely as
predicted by our analysis of the simplified geometry

calculated in the Supplemental Material [39]. The main
panel of Fig. 4 shows the full distribution of restoring forces
for ϵx ¼ 10−4, compared to our analytic prediction (dashed
lines), indicating that our simple model captures the origin
of anomalous behavior in the simulations.
How is it possible that a mechanical measurement gives a

different answer than the fluctuation-based one? Our works
suggests that the nature of the mechanical measurement is
important: the parallel plate experiment accesses much
larger forces because it is strain controlled, and so it can
overcome cusplike pinning forces. The signature of this is
likely contained in the transient behavior of the forces
shown in the inset of Fig. 1(b). A small-scale micro-
rheology experiment, for example, might yield a result
more similar to the fluctuation-based measurement.
We have demonstrated that adding a simple interfacial

tension term in a model of topologically interacting cells
can lead to highly nontrivial material behavior. We find a
strong discrepancy between the effective surface tension
defined by mechanical measurements versus those based
on fluctuations, even in equilibrium. The roughness of
interfaces is almost completely suppressed, leading to
strikingly sharp boundaries between fluid domains.
The extreme interfacial sharpening is due to the topo-

logical nature of the intercellular interactions. Since cells
interact with their neighbors, and not according to the
distance between cells, a cusplike energy landscape under-
lies the dynamics. We have confirmed that this behavior is
robust to changes to single cell mechanics (e.g., p0),
changes to the propulsion mechanism (e.g., thermal vs
self-propelled), and changes in the underlying degrees of
freedom of the model. Note that in the Voronoi model the
topology of the interaction network is set by the geometry,
but in models with more degrees of freedom (such as vertex
models or cellular Potts models) this is not the case. We
believe that exploring the connection between the rules for
how cells exchange neighbors and the nature of interfaces is
an important avenue of future research. This interfacial
sharpening mechanism has obvious implications for cell
compartmentalization, but it also may influence the dynam-
ics of cell sorting. It is commonly assumed that both
compartmentalizing and sorting proceed as if cells were
immiscible fluids; we have seen that many-fold vertices
fundamentally alter compartmentalization, and we specu-
late that they may likewise have profound consequences for
the process by which cells sort.
Recent work has suggested that surprising consequences

can arise from systems interacting via topological inter-
actions rather than purely metric-based ones [46–49].
While much of the work in this direction has focused on
explicitly nonequilibrium systems—animal flocking or
self-propelled particles interacting with combined Viscek
and Voronoi dynamics—here we have shown that surpris-
ing interfacial behavior may arise as a generic consequence
of the cusplike landscape generated by the topological
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FIG. 4. The restoring force changes discontinuously when
interfacial cells are displaced. The distribution of restoring forces,
PðfrÞ, on cells displaced by ϵx ¼ 10−4 in the inherent state of a
system prepared in a strip geometry with p0 ¼ 3.95, Dr ¼ 1,
v0 ¼ 0.1. From left to right γ0 ¼ 0.04, 0.08, 0.16, 0.32, 0.64. The
dashed vertical lines show the magnitude of the restoring force
predicted from the analytical calculation in the Supplemental
Material [39] based on breaking fourfold vertices in a square-
lattice geometry for each value of γ0 (see inset). For each value of
γ0 the mean of the restoring force is nearly independent of the
displacement for small displacements, demonstrating the non-
Hookean behavior of the interface. The dashed line is the
Hookean fit to the γ0 ¼ 0.04 data at large displacements.
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FIG. 3. Short interfacial edges become more probable with
increasing tension. Probability distribution of interfacial edge
lengths, PðliÞ, for p0 ¼ 3.95, v0 ¼ 0.1, Dr ¼ 1 and γ0 ¼
0.005–0.64 (light red to dark blue curves). The distribution
of cell edge lengths in the bulk is given by the dashed black
curve. The li ≪ 1 distributions are approximately exponential,
with characteristic decay length lp. Inset: The length lp,
characterizing the short edge distribution for Dr ¼ 1 and
v0 ¼ 0.1, 0.05, 0.025. The dashed red line is a guide to the
eye with slope -1, corresponding to a Boltzmann expectation
PðliÞ ∼ exp ½−li=ðTeff lpÞ�.
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rules. We speculate that, in the context of real cellular
aggregates, epithelial cells may interact topologically
whereas mesenchymal or nonconfluent cells may interact
metrically (through the surrounding medium or otherwise).
In addition to its relevance for confluent cellular aggre-
gates, our findings may point towards a interesting new
class of bioinspired materials, where combining meso-
scopic interaction units with independent regulation of
tension and adhesion may support a diverse set of unusual
material properties.
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