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We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking
the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized
Stokes-Einstein relation is employed to extract an effective stress relaxation function GGSEðtÞ from the
mean square displacement of NPs. GGSEðtÞ for different NP diameters d are compared with the stress
relaxation function GðtÞ of a pure polymer melt. The deviation of GGSEðtÞ from GðtÞ reflects the
incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in
GGSEðtÞ emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in
GðtÞ for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring
polymers, GGSEðtÞ approaches GðtÞ of the ring melt with no entanglement plateau.
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Microrheology is a powerful technique to measure the
viscoelasticity of a medium through tracking the motion of
embedded probe particles [1]. The particles are often much
larger than any structural length scale of the medium, and
their motion is coupled to the bulk viscoelasticity [2–4]. In
this Letter, we use molecular simulations to explore the
extension of microrheology to nanorheology, in which
nanoparticles (NPs) smaller than or comparable to the
structural length scales of the medium are used instead of
micron-size beads. Specifically, we study NPs in a melt of
entangled polymers. A key question is how viscoelastic
modes of the melt affect the NP motion and how it is related
to the diameter d of NPs and the structural length scales of
the polymer melt, such as the average spacing a between
polymer entanglements and the average size R of polymers.
Diffusion of NPs in a polymer melt is an essential

process during the fabrication of polymer nanocomposites,
a prominent class of hybrid materials [5,6]. Experiments
[7–10] and simulations [6,11–13] have demonstrated that
NP diffusion in a melt of entangled linear polymers
depends on the relation between d and a. The mobility
of NPs with d < a is higher than the prediction of the
Stokes-Einstein relation [12,13]. Scaling theory [14] argues
that these NPs are coupled only to the unentangled
dynamics of local chain segments with sizes up to ≈d.
The mobility of NPs with d > a is suppressed due to the
confinement of the entanglement network [12,13]. While
sufficiently large NPs are trapped by the network and
cannot freely diffuse until the terminal relaxation of the
network, NPs with d moderately larger than a can over-
come the entanglement confinement through the hopping
diffusion mechanism [15].
Recently, NP diffusion in an entangled melt of noncon-

catenated ring polymers has also been studied using

simulations and scaling theory [13]. The motion of NPs with
d > a in ring polymers is not as strongly suppressed as in
linear polymers of the same lengths, as there is no entangle-
ment network in a ring polymer melt. The comparison of NP
diffusion in entangled linear chains and nonconcatenated rings
exemplifies the effects of polymer architecture on the dynami-
cal coupling between NPs and polymer melts.
One measure of viscoelasticity is the stress relaxation

modulus GðtÞ as a function of time t. In microrheology,
GðtÞ is linked to the mean squared displacement (MSD) of
tracer particles hΔr2ðtÞi through the generalized Stokes-
Einstein (GSE) relation [1,2]. In the domain of Laplace
frequency s, the GSE relation is

~GðsÞ ¼ 6kBT

fπdshgΔr2ðsÞi ; ð1Þ

in which ~GðsÞ and gΔr2ðsÞ are the unilateral Laplace
transforms of GðtÞ and hΔr2ðtÞi, respectively. f ¼ 3 or
2, depending on whether the particle-medium boundaries
are stick or slip.
We employ the GSE relation to convert the simulation

data of a NP MSD in a polymer melt to an effective stress
relaxation functionGGSEðtÞ. The results ofGGSEðtÞ for NPs
with different diameters d are compared with the stress
relaxation function of the corresponding pure polymer melt
GGKðtÞ, which is obtained using the Green-Kubo formula.
This comparison is performed for NPs in entangled linear
polymers and nonconcatenated ring polymers. Through this
comparison, we examine the coupling between NP motion
and the bulk melt viscoelasticity and the dependence of the
coupling on d.
The models of polymers and NPs are similar to those in

previous molecular dynamics simulations [6,12,13,16–19].
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Lennard-Jones units σ, m, and ϵ are used for the length,
mass, and energy, respectively. For the entangled linear
polymer melt, the number of monomers per entanglement
strand Ne ≈ 28 [20,21], the average spacing between
entanglements a ≈ 5σ [21], and the entanglement time τe ≈
4000τ [22] with τ ¼ σ

ffiffiffiffiffiffiffiffiffi
m=ϵ

p
. The number of monomers in

a polymer is N ¼ 800 for both linear chains and rings. NP
diameter d ranges from 3σ < a to 15σ ≈ 3a, and the
volume fraction of NPs ϕNP ≈ 10%. Previous simulations
[6] have shown that the viscosity of a NP linear polymer
composite is reduced with respect to that of the corre-
sponding pure polymer melt if d < a and almost
unchanged if d ≈ a, while enhanced if d > a. The relative
change of composite viscosity with respect to the pure melt
viscosity can be up to ≈25% at ϕNP ≈ 10%. For NP-ring
systems, our simulation results show that the composite
viscosity at ϕNP ≈ 10% also changes by up to ≈25%
depending on d. All samples were equilibrated at pressure
P ¼ 0 and temperature T ¼ 1.0ϵ=kB. Subsequent simula-
tions were run at constant volume V for up to 108τ. MSDs
hΔr2ðtÞi of NPs in the simulations have been reported in a
previous paper [13]. Additional simulation details are
presented in Supplemental Material [23].
The stress relaxation modulus for a pure polymer melt is

calculated using the Green-Kubo formula

Gij
GKðtÞ ¼

V
kBT

hσijðtÞσijð0Þi; ð2Þ

where σijðtÞ is the preaveraged stress [24] and i and j are
Cartesian indices with i ≠ j. GGKðtÞ is computed as the
average of Gij

GKðtÞ with ij ¼ xy, xz, and yz.
We use the GSE relation [Eq. (1)] to convert hΔr2ðtÞi to

GGSEðtÞ. The conversion is done using the method devel-
oped by Mason [25]. One example of the conversion is
given in Fig. 1. The early-time part of hΔr2ðtÞi is excluded
from the conversion, as the inertialess GSE relation
[Eq. (1)] is not applicable to the regime of ballistic motion
and the subsequent crossover to thermal motion [26].
As shown in the inset in Fig. 1, a typical MSD curve
starts with a ballistic regime where the log-log slope
α ¼ d log hΔr2ðtÞi=d log t ¼ 2, then it crosses over to a
subdiffusive regime with α < 1, and eventually enters the
Fickian regime with α ¼ 1. We estimate that the crossover
from ballistic to thermal motion ends at the inflection point
of α vs log t. The black square in the inset in Fig. 1 indicates
the end of the crossover at τ� ≈ 30τ for d ¼ 5σ. A detailed
discussion of this criterion for τ� can be found in
Supplemental Material [23]. Only hΔr2ðtÞi for t > τ� is
used in the conversion to GGSEðtÞ.
Throughout the Letter, we use f ¼ 2 for the GSE

relation, which corresponds to slip NP-polymer boundaries.
The slip boundary results from the slip length LsðtÞ being
larger than d for t > τ�. Previous simulations [30] have

demonstrated that Ls for a bulk polymer melt scales linearly
with the melt viscosity η. To estimate LsðtÞ in the present
simulations, a similar scaling relation LsðtÞ ≈ b½ηðtÞ=η0�, in
which monomer size b ≈ σ and monomeric viscosity
η0 ≈ τkBT=σ3, is used. In Supplemental Material [23],
we estimate ηðtÞ from R

t
0 GGKðt0Þdt0 and demonstrate that

the condition LsðtÞ > Lsðτ�Þ > d for t > τ� is satisfied in
all simulated NP-polymer systems (see Fig. S1), justifying
the slip NP-polymer boundaries.
Results for GGKðtÞ and GGSEðtÞ for linear polymers are

shown in Fig. 2(a). For GGKðtÞ, there is first a power-law
decay, then the development of an entanglement plateau,
and finally the regime of terminal relaxation. At t ≈ 6.5 ×
104τ with the smallest log-log slope j − d logGðtÞ=
d log tj ≈ 0.07, GðtÞ ≈ 2.6 × 10−2ϵ=σ3, which is close to
the theoretical prediction [31] of the entanglement plateau
Ge ≈ 4ρkBT=5Ne ≈ 2.5 × 10−2ϵ=σ3 with melt density ρ ¼
0.89σ−3 and Ne ≈ 28. The power-law decrease can be
described using the Rouse modes of short unentangled
sections of polymer and is predicted to scale asGðtÞ ∼ t−1=2

[32]. The entanglement plateau has been successfully
understood based on the phenomenological tube model
[31,32], in which entangled chains are confined in their
respective tubes with an average diameter ≈a. For Z ¼
N=Ne ≈ 30 as in the present simulations, dynamic proc-
esses such as Rouse-type relaxation along the tube, tube
length fluctuation and constraint release contribute to the
partial stress relaxation prior to the terminal relaxation [33]
and result in the deviation of the plateau from a horizontal
line. To compare the simulation data of GGKðtÞ with
theories for polymer stress relaxation, we fit GGKðtÞ
to the theoretical expression proposed by Likhtman

FIG. 1. GGSEðtÞ (open squares) for d ¼ 5σ in linear polymers
with N ¼ 800. The corresponding hΔr2ðtÞi is shown in the inset
(see the black line). The log-log slope α ¼ 2 for the ballistic
regime and α ¼ 1 for the Fickian regime are indicated. The
estimated end of the crossover between ballistic and thermal
motion is indicated by the black square.
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and McLeish [33]. The details of the fitting are presented
in Supplemental Material [23]. The parameters of
the best fit are N=Ne ¼ Z ¼ 33 � 1, Ne ¼ 24 � 1,
τe¼ð1.9�0.1Þ×103τ, and Ge ¼ ð0.030� 0.002Þϵ=σ3.
The melt viscoelasticity that affects the thermal NP

motion in linear chains depends on d, as demonstrated
in the d dependence of GGSEðtÞ in Fig. 2(a). For d ¼ 3σ <
a and d ¼ 5σ ≈ a, there is no plateau in GGSEðtÞ. The
dynamic modes of local chain segments that control
the motion of NPs with d ≤ a contribute to GGSEðtÞ.
The degree of coupling between NP motion and these
dynamic modes is quantified by the ratio GGSEðtÞ=GGKðtÞ
[see Fig. 2(b)]. As t increases, GGSEðtÞ=GGKðtÞ drops
below 1, indicating a reduced degree of coupling between
NP motion and the corresponding dynamic modes. The
decrease of GGSEðtÞ=GGKðtÞ is less rapid for d ¼ 5σ than
for d ¼ 3σ, indicating stronger coupling between NP
motion and the melt viscoelasticity with increasing d.

Scaling theory [14] predicts that the motion of a NP with
d < a is coupled to the Rouse modes of chain segments
with sizes up to d. Motivated by the theory, we compare
GGSEðtÞ for d ≤ a with

GðtÞ ¼ ρkBT
N

XN
p¼pc

exp

�
−
2tp2

τR

�
; ð3Þ

which is the sum of the modes with Rouse time τR and
mode indices pc ≤ p ≤ N. N ¼ 800, and N=pc is the
number of monomers in the largest chain segment that
affects NP motion. The comparison is presented in
Supplemental Material [23].
As d exceeds a, a plateau regime emerges as indicated by

the inflection in the log-log plot ofGGSEðtÞ. The presence of
a plateau means that NPs with d > a are affected by the
confinement of the entanglement network. The confinement
is stronger for larger d, and the coupling betweenNPmotion
and melt viscoelasticity is enhanced with increasing d, as
shown in Fig. 2(b). However, for the largest d ¼ 15σ, the
coupling is still not completewithGGSEðtÞ=GGKðtÞ < 1.We
fit GGSEðtÞ for d > a to the Likhtman-McLeish expression
[33] [Eq. (S1)]. As shown in SupplementalMaterial [23], the
best-fit value of the number of entanglements per chain Z
increases with d but stays below Z ¼ 33 for the bulk melt.
The reason for the partial coupling for 8σ ≤ d ≤ 15σ has
been attributed to the hopping diffusion [13,15] for d
moderately larger than a.
The terminal regime of GðtÞ in Fig. 2(a) is fit to an

exponential decay with GðtÞ ∼ exp ð−t=τtÞ, where τt is the
characteristic decay time. While τt characterizes terminal
stress relaxation in the pure melt, τt for GGSEðtÞ is
essentially the terminal diffusion time of NP motion.
The results of τt for GGSEðtÞ and GGKðtÞ are shown in
the inset in Fig. 2(a). τt for GGSEðtÞ increases with d and
then saturates around τt for GGKðtÞ as d exceeds 10σ.
Despite the saturation of τt, GGSEðtÞ is still below GGKðtÞ
for d ≥ 10σ. This suggests that NPs with d ≥ 10σ are
coupled to the melt dynamics up to the longest terminal
relaxation mode, though the coupling is not complete.
Scaling theory [15] predicts that τt ∼ d4 for d < a, τt ∼
exp ðd=aÞ for hopping diffusion, and finally τt saturates at
the terminal relaxation time of the melt in the large d limit.
The best fit of the d dependence of τt to an analytical
function motivated by the theory is shown by the dashed
line in the inset in Fig. 2(a). Details about the fitting and the
terminal regimes are in Supplemental Material [23].
Results of GGKðtÞ and GGSEðtÞ for ring polymers are

shown in Fig. 3. UnlikeGGKðtÞ for linear polymers,GGKðtÞ
for ring polymers has no entanglement plateau, as there is
no long-lived entanglement network [34]. As d increases,
GGSEðtÞ for NPs in rings approaches GGKðtÞ for pure rings,
and the ratio GGSEðtÞ=GGKðtÞ deviates from 1 less rapidly
with increasing t (see the inset in Fig. 3). These results
show that NP motion is coupled to the melt viscoelasticity

FIG. 2. (a) GGSEðtÞ for NPs with different d in linear polymers
with N ¼ 800 compared to GGKðtÞ for the pure linear polymer
melt. The inset shows τt vs d forGGSEðtÞ (blue squares) and τt for
GGKðtÞ (red line) with error bars. The dashed blue line indicates
the best fit to the scaling theory prediction [15]. (b) The ratio
GGSEðtÞ=GGKðtÞ for the same systems as in (a).
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over a wider spectrum of relaxation modes with increasing
d, and the coupling is stronger for larger d. Scaling theory
[13] predicts that NP motion is coupled to the dynamics of
ring sections with sizes up to d, which is smaller than the
size of an entire ring polymer.
The motion of NPs with sufficiently large d is expected

to be completely coupled to the terminal relaxation of the
polymer melt, and the correspondingGGSEðtÞ excluding the
early-time part affected by NP inertia is expected to agree
with GGKðtÞ [35]. Previously, based on the examination of
the d dependence of the diffusion coefficientD for the same
simulations [13], we estimated that the Stokes-Einstein
(SE) relationD ¼ kBT=2πηd, where η is the melt viscosity,
is recovered for d > dc ≈ 20σ in NP-linear systems
(N ¼ 800) and for d > dc ≈ 30σ in NP-ring systems
(N ¼ 800). Since the recovery of the SE relation corre-
sponds to a complete coupling between NP diffusion and
the melt viscoelasticity, we expect that the threshold NP
size dc for the agreement between GGSEðtÞ and GGKðtÞ is
also 20σ and 30σ for NP-linear and NP-ring systems
(N ¼ 800), respectively.
The important length scale that determines the agreement

between GGSEðtÞ and GGKðtÞ differs for NPs in linear and
ring polymers. According to the hopping diffusion model
[15] for NPs in entangled linear polymers, the hopping
probability decreases as ∼ exp ð−d=aÞ. Hopping diffusion
is suppressed for d sufficiently larger than a, and therefore
the NP motion is completely coupled to the relaxation of
the entanglement network even for d smaller than the size
of linear chains. In the present simulation, the estimated
dc ≈ 4a for the complete coupling between NPs and linear
polymers. By contrast, d is compared with the average
spanning size hR2i1=2 of ring polymers to determine the
agreement between GGSEðtÞ and GGKðtÞ. As there is no
long-lived entanglement network to confine NPs in ring

polymers, the NP motion is increasingly coupled to ring
dynamics at longer time scales and larger length scales as d
increases towards hR2i1=2. In the present simulations,
hR2i1=2 ≈ 15σ, and the estimated dc ≈ 2hR2i1=2 for the
coupling between NPs and the entire relaxation dynamics
of rings. dc ≈ 2hR2i1=2 results from the broad distribution
of R around the average hR2i1=2. Our analysis in
Supplemental Material [23] shows that 33% of all R are
larger than hR2i1=2, while almost all (99%) R are smaller
than d ¼ 2hR2i1=2. This explains why NPs with d ¼ 15σ
are not completely coupled to the entire ring dynamics,
whereas NPs with d > 2hR2i1=2 are anticipated to be
almost completely coupled.
Another important length scale for NP-polymer coupling

is the slip length Ls at NP-polymer boundaries. The present
simulations correspond to a slip boundary condition with
Ls > d. If d > Ls, the boundary condition becomes stick.
There would be a scaling regime where the NP motion is
fully coupled to all relaxation modes of polymers but with
stick NP-polymer boundaries. Figure S9 [23] shows the
scaling theory prediction for such a regime depending on d
and the polymer size. The existence of two length scales dc
and Ls suggests a two-stage coupling of NPs to the entire
polymer dynamics with increasing d. NPs are first coupled
to all relaxation modes with slip NP-polymer boundaries as
d exceeds dc. Subsequently, the boundary conditions
change from slip to stick as d further increases above Ls.
In summary, on the basis of molecular simulations, we

compare the stress relaxation moduli GGSEðtÞ converted
from NP MSD through the generalized Stokes-Einstein
relation and GGKðtÞ for pure entangled polymer melts
calculated using the Green-Kubo formula. The deviation of
GGSEðtÞ from GGKðtÞ results from the incomplete coupling
of NP motion to the relaxation modes of the polymer melt.
The threshold NP size dc for the agreement between
GGSEðtÞ and GGKðtÞ is compared to the entanglement mesh
size for NP-linear systems whereas to the polymer size for
NP-ring systems in which there are no long-lived entan-
glement networks. Our simulations correspond to slip NP-
polymer boundaries, but a change from slip to stick
boundaries as d increases above the slip length Ls is
anticipated. NP-polymer coupling with increasing d is
proposed to be a two-stage process depending on dc and
Ls. Our study should help extend the well-established
microrheology procedures to nanorheology, which would
advance the study of local viscoelasticity that controls the
dynamics of nanoscale objects in a viscoelastic medium,
such as NPs in polymer nanocomposites and NP-based
drug carriers in living cells.
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