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By adsorbing the same species onto both sides of a suspended, atomically thin membrane, it is possible
to couple two distinct surface adsorption systems. This new system, with reflection symmetry about the
membrane, is described by a phase diagram with two axes, both representing the chemical potential of the
same element, but in distinct half-spaces. For the case of potassium adsorption onto a graphene membrane,
the result is a devil’s staircase of fractions for the proportion of adsorbates adhered to one side. Fractions
with simpler denominators are favored across wider regions of chemical potential, a pattern reminiscent of
other fractional systems across a wide range of physics. Since the system can support multiple devil’s
staircases each at a distinct overall adsorbate areal density, points along the boundary between adjacent
staircases can come arbitrarily close to violating the Gibbs phase rule. This dual-sided adsorbate geometry
provides a means to explore surface science for pairs of weakly coupled surfaces.
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The concept of two identical coupled two-dimensional
electronic subsystems has been explored in bilayer gra-
phene [1,2], quantum Hall bilayers [3], and other emerging
two-dimensional systems. Here we explore the theory of a
bilayer system in which the important degrees of freedom
are not electronic, but atomic—an adsorption bilayer. We
consider symmetric dual-sided adsorption, in which iden-
tical species adsorb to opposite surfaces of a thin suspended
membrane such as graphene [4,5], hexagonal boron nitride,
or transition metal dichalcogenide. The structural phase
diagram thus has the same variable—adsorbate chemical
potential—on both axes, since they refer to different half-
spaces, μtop and μbottom. Two traditional single-sided sur-
face-physics systems are coupled, and thereby generate
new physics.
We study this geometry for a prototypical adsorbate

system: alkali atoms on sp2 carbon. The strong charge
transfer here supports substantial cross-layer interactions;
its simplicity facilitates detailed analysis; and the principles
gleaned will inform other choices of barrier and adsorbate.
The adsorption of alkali on graphene or graphite surfaces is
well studied [2,6–21]. At low coverage, potassium
adsorbed on graphite [9,11,13–15] supports a dispersed
phase with a large K-K separation (up to 60 Å [9]) due to a
repulsive long-range interaction, although long-range crys-
talline order may be lacking. As the coverage increases, the
K-K distance decreases to about 14 Å (corresponding
roughly to a 7 × 7 superlattice) at which point a dense,
metallically bonded 2 × 2 phase appears [9]. We examine

potassium adsorption onto both sides of suspended gra-
phene, first within first-principles density functional theory
and then within an empirical treatment that enables a more
complete exploration of the phase diagram. Density func-
tional calculations use projector augmented waves at a
400-eV plane-wave energy cutoff, as implemented within
the Vienna ab initio simulation package (VASP). Ionic
relaxations were converged to < 0.01 eV=Å, and all in-
plane lattice constants were relaxed. The out-of-plane
periodicity is fixed at 20 Å, with dipole corrections applied
to neutralize spurious c-axis interactions (although at this
large separation the artificial inter-sheet interaction is
weak). Local-density approximation (LDA) and Perdew-
Burke-Ernzerhof (PBE) exchange-correlation treatments
are reasonably consistent.
Previous calculations [14] for adsorption of potassium

onto a graphite surface showed a strong preference for the
hexagonal center, a preference preserved in dual-sided
adsorption (for example, 3 × 3 superlattices adsorbed onto
both sides of graphene prefer hexagonal centers, with
alternative bond-center and atom-top sites being 0.05 to
0.1 eV per K atom higher in energy, see Fig. 1). We
consider only hexagon-centered adsorption sites hereafter.
In general, the dual-sided system prefers that atoms in one
adsorbate superlattice be centered on empty regions of the
adsorbate superlattice on the other side. Competing lattice
registries, also hexagon-centered but shifted as indicated
by smaller dots in Fig. 1, are typically a few tenths of meV
(up to 0.16 eV) per unit cell (holding two alkali atoms)
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higher in energy. This adsorbate-adsorbate repulsion is
not simply a direct Coulombic repulsion between the
positively-charged alkali atoms, but also includes the
Pauli repulsion of the electron clouds that they create in
the graphene sheet [12]. We consider in detail two classes
of dual-sided structures, both extensions of familiar single-
sided adsorbate superlattices. First, structures with an a × a
superlattice on one side and a b × b superlattice on the
other, written as a × a=b × b (and optimized for the best
inter-lattice registry). An empty or bare side is represented

by a or b equal to ∞. The second class forms an overall
n × n lattice in projection (i.e., counting adsorbates on both
sides), but a fraction α of the atoms are on one side and
1 − α on the other (with the specific top or bottom pattern
requiring further specification). We call this case n × n∶α.
We have examined a × a=b × b for (a, b ¼ 2, 3, 4, 5, 6, 7,
8, 2

ffiffiffi
3

p
, 3

ffiffiffi
3

p
, 4

ffiffiffi
3

p
, and∞) and n × n∶α for (n ¼ 2, 3, 4, 5,

6, 8, and α ¼ 0.25, 0.5), as described in the Supplemental
Material [22]. For completeness, we also tested several
rectangular lattices with the superlattice unit vectors in a
1∶

ffiffiffi
3

p
=2 ratio (with the same cell areas as 4 × 4 and 8 × 8);

these are not favored in the final phase diagrams, either
single or dual sided.
Following a convex-hull construction, we obtain the

phase diagram of the middle panel of Fig. 2 (for compari-
son, the left panel shows what would result if the adsorbates
on opposite sides did not interact). The transition from
sparse, repulsion-dominated phases at low density to short-
ranged metallic bonding at high density is consistent with
experiment [9,11]. The diagram is symmetric across the
diagonal, since identical species are adsorbed to both sides.
The expansion of the phases with ∞ ×∞ on one side
shows that the presence of potassium on one side of the
membrane repels potassium from the other side. The outer
regions of the interacting phase diagram at both high and
low chemical potential retain the horizontal or vertical
phase boundaries of the noninteracting case. In contrast, the
interior of the phase diagram deviates markedly from the
noninteracting case. Along the diagonal dashed lines in
the middle panel of Fig. 2 the average chemical potential
μ̄≡ 1

2
ðμtop þ μbottomÞ is constant while the difference in

chemical potentials δμ≡ μtop − μbottom varies. The adsorb-
ate pattern undergoes an interesting evolution: along the
lower dashed line, it retains an overall 5 × 5 lattice when
viewed in projection, but with the fraction α of the

FIG. 1. Sample of structures considered at the first-principles
level. Solid black dots represent upper-side adsorbates and
hollow pink dots represent bottom-side adsorbates. Where several
solid circles occur in close proximity, the largest one is the
lowest-energy location and the others are alternative registries
considered. For the 2 × 2=6 × 6 case we also examined a
structure with the two lattices coincident. In general, the system
prefers opposing adsorbate lattices to be maximally offset from
each other. Notation for lattices is described in the main text.

FIG. 2. Left: Idealized phase diagram within DFT for potassium adsorbed onto both sides of a suspended graphene barrier if each side
is assumed to be independent (i.e., constructed by simply superimposing two phase diagrams for one-sided adsorption). Middle: Phase
diagram for dual-sided adsorption of potassium onto a suspended graphene barrier at the density functional level, for the full system with
cross-barrier interactions. Right: The same phase diagram using an empirical electrostatic dipole-dipole interaction to distinguish which
adsorbates are on the top or bottom for a given overall pattern. The circles mark locations where four phases almost coexist at one point.
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adsorbates on one side changing from 0 → 0.25 → 0.5 →
0.75 → 1.0 as δμ increases. Potassium progressively leaves
one side and attaches to the other with a constant overall
areal density that is consistent with the constant μ̄.
The same evolution with δμ seems to occur for the 6 ×
6 and 8 × 8 structures, although computational limitations
reduce the number of intermediate values of α accessible
for these larger lattices. Treating the top or bottom degree of
freedom as an effective Ising spin, the chemical potential
difference δμ acts as a symmetry-breaking field.
First-principles methods cannot exhaustively search the

structural variants possible for complex fractions α. Those
with large denominators have very large unit cells—they
are supercells of a supercell—and also require complex
combinatoric choices for which atoms reside on which side.
However, a simple empirical electrostatic model can
provide a surprisingly accurate treatment, so long as one
restricts oneself to comparing structures that have the same
projected pattern of adsorbates (where “projection” means
ignoring which side each adsorbate is on). The long-ranged
repulsion between potassium atoms adsorbed onto a
graphite surface at low areal density (or large n) is
dominated by the band energy of the graphene sheet,
due to level filling by charge-transferred electrons [12].
For a suspended graphene membrane, this level-filling
effect is almost independent of which side each potassium
atom adheres to. The large energy scale of this level-filling
effect thus determines the n in n × n∶α, i.e., the overall
areal density, but not α or the detailed top or bottom pattern
assumed within a given α. The remaining which-side
degree of freedom is governed by the weaker, long-ranged
electrostatic dipole-dipole interaction between adsorbates.
Thus, although the total energy of any specific adsorbate
structure depends on subtle quantum mechanical effects
due to indirect adsorbate-adsorbate interactions mediated
by charge transferred to the barrier, the energy differences
upon flipping an adsorbate from one side to another arise
almost entirely from long-ranged electrostatic dipole-
dipole interactions that can be accurately described within
a classical electrostatic model. This separation in energy
scales becomes more pronounced at lower areal densities.
In such an empirical model, each adsorbed alkali ion (plus
the transferred charge resident in the membrane nearby) is
modeled as an electrostatic dipole whose magnitude is
extracted from first-principles calculations. Within the
LDA, the 8 × 8∶0, 7 × 7∶0, 6 × 6∶0, and 5 × 5∶0 lattices
have nearly identical dipole moments of 1.54, 1.53, 1.51,
and 1.48 eÅ per adsorbate, respectively, since the charge
transfer saturates at one electron per adsorbate with nearly
constant c-axis relaxation. Switching K atoms from one
side to another leaves the charge transfer and the c-axis
separation almost unchanged. The 6 × 6∶0 and 6 × 6∶0.5
lattices differ in total energy by 0.06 eV per K atom. If we
fit the dipole moment of a classical electrostatic model to
reproduce this result, we obtain a moment of 1.46 eÅ, in

excellent agreement with the first-principles moments and a
clear indication that dipolar electrostatics controls the
variation in total energy with α at fixed n. A similar
comparison for 8 × 8∶0 versus 8 × 8∶0.5 and 5 × 5∶0
versus 5 × 5∶0.5 yields classical moments of 1.51 eÅ
and 1.42 eÅ, respectively (the 5 × 5 lattice is the more
challenging test, since its higher areal density accentuates
relaxations that are absent in the simple electrostatic
treatment). PBE results also agree well with a classical
dipole model, with slightly (∼10%) higher dipole
moments; thus the main results should be insensitive to
the choice of exchange-correlation functional, beyond a
slight overall shift in energy scale.
We focus on the 6 × 6∶α family of structures for detailed

mapping of the phase diagram along a line of fixed average
μ̄ and variable δμ, i.e., the upper dotted line in Fig. 2. For a
given α one must optimize the choice of which K atoms to
place on which side; for a cell containing N adsorbates
there are ðNMÞ possibilities for α ¼ M=N, which we explore
by Monte Carlo–based simulated annealing. To obtain
arbitrary fractions, one must simulate supercells of the 6 ×
6 structure, i.e., supercells of a supercell. We write the i × j
supercell of the 6 × 6 base cell using square brackets, as
½i × j�. The most energetically favorable such super-
supercells are close to square; we have examined ½3 × 3�,
½4 × 4�, ½4 × 5�, ½4 × 6�, ½5 × 5�, ½5 × 6�, ½5 × 7�, ½6 × 6�, and
½6 × 8� (this set can access fractions up to those with
denominator 48, which is sufficient to firmly establish that
the simpler fractions actually seen to dominate the phase
diagram are not spurious results of limited sampling). The
bottom inset in Fig. 3 shows the resulting lattice energies.
The reflection-symmetric α ¼ 1

2
phase is lowest in energy,

FIG. 3. Fraction of potassium on upper side of the membrane
versus δμ for 6 × 6∶α. A complete list of fractions appearing is
given in the Supplemental Material [22]. Top inset: Example of
the lowest energy conformation for 6 × 6∶0.6 obtained from
Monte Carlo optimization, where solid (hollow) dots represent
top (bottom)-side potassium. Bottom inset: Convex hull con-
struction for the energy per potassium versus α for 6 × 6∶α,
where each point represents a specific α optimized for cell size,
shape, and top or bottom distribution.

PHYSICAL REVIEW LETTERS 120, 056101 (2018)

056101-3



but is favored only around δμ ≈ 0. The top inset of Fig. 3
shows the lowest energy lattice structure for α ¼ 0.6 from
annealing. In constructing the phase diagram, the simplest
structures (all of the a × a=b × b cases plus the n × n∶α
cases with α ¼ 0, 1

2
, or 1) are treated at a first-principles

level. The structural energetics of the more complex
fractions (n × n∶α for n ¼ 5, 6, 8 and α ¼ 1

3
; 1
4
; 2
5
; 1
6
;

1
9
; 1
12
, etc.) are handled within the empirical dipole-dipole

model, referenced against the DFT energy of the n × n∶α
(α ¼ 0, 1

2
or 1) system (as one special case, 5 × 5 at α ¼ 1

4

is small enough to handle within DFT).
The convex hull of this distribution yields the striking

stepped phase sequence depicted in Fig. 3. Do these fraction
sequences follow any simple patterns? The low-density limit
can be expressed as an expanding series of near-square cells:
ð3 × 3Þ−1; ð3 × 4Þ−1; ð4 × 4Þ−1; ð4 × 5Þ−1; ð5 × 5Þ−1;…. In
the dilute limit [αð1 − αÞ ≪ 1], each new minority dipole
begins life immersed in majority dipoles, so the energy of
successive dipole flips is roughly constant. Our intuitions
deeper into the phase diagram can be developed by consid-
ering a one-dimensional casewhere particles are arrayed on a
line in one of two configurations, a model examined in the
context of conductive polymers by Hubbard [23] and Bak
and Bruinsma [24] with a (convex, long-ranged) electrostatic
interaction and variable doping level. In one dimension, all
fractional doping levels appear and every rational α is stable
over a finite chemical potential interval: a devil’s staircase.
The devil’s staircases arise when a system travels through a
series of higher or lower order commensurations between
two distinct periodicities [24–26]. Examples include dipolar
lattice boson gas with infinite-ranged convex interaction
[27,28], (anti)ferroelectric smectic liquid crystals [29–31],
charge or magnetic ordering in various atomic-scale lattices
[32–34], or physical adsorption onto an incommensurate
substrate. In the adsorbate bilayer, the two interacting lattices
are identical and the incommensuration arises from their
relative occupation. The Supplemental Material [22] shows
how the width ΔμðαÞ of each step α in the one-dimensional
model of Hubbard [23] and Bak and Bruinsma [24] can be
written
in terms of LðαÞ, the length of the unit cell, which is a
monotonically increasing function of the denominator of α,
i.e., the complexity of the fraction. For dipolar particles with
the interactions normalized to a nearest-neighbor interaction
strength of �1, we obtain

ΔμðαÞ ¼ 4π2

L2

�
1

sin2ðπLÞ
−

π cosðπLÞ
L sin3ðπLÞ

−
1

3

�
: ð1Þ

The width of the stability interval decreases as the denom-
inator of α increases. Although there is no general analytic
solution for the devil’s staircase in two dimensions [28,35],
we also expect a dense series of stable fractions with the
simplest fractions occupying the largest spans of chemical

potential. The left and right derivatives of the lattice energy
EðαÞ are unequal for both the one-dimensional and two-
dimensional systems, and the derivative difference gives
the chemical potential interval occupied by that fraction.
The fractions 1

2
, 1
4
, 1
5
, and especially 1

3
dominate the sequence.

For 1
3
, 1
4
, and 1

9
, one side hosts a

ffiffiffi
3

p
×

ffiffiffi
3

p
, 2 × 2, or 3 × 3

sublattice (respectively) within the overall 6 × 6 adsorption
pattern. Simple patterns can enjoy more repetition, and so
they tend to dominate the phase diagram.
In the case of dual-sided adsorption, we have multiple

devil’s staircases build on different n × n superlattices
rising in parallel towards α ¼ 1

2
, with steeper slopes for

higher n. Since each staircase has an infinite number of
small steps, the system comes arbitrarily close to violating
the Gibbs phase rule along the dividing line between
distinct staircases. The inset to the right panel of Fig. 2
shows one such location, with four phases nearly coexist-
ing. The phase diagram’s symmetry across the diagonal
suggests that ideal fourfold vertices might be possible in
different dual-sided systems, where the point in question is
on the diagonal.
Is this system attainable experimentally? An imper-

meable suspended graphene monolayer has already been
used to separate two independent spaces [36], when
suspended above a pothole-shaped depression in an SiO2

substrate. Transferring this accomplishment to through
holes in, e.g., Si3N4 membranes [37–40] would yield the
desired dual-sided adsorption geometry. A typical micron-
squared dimension for such a membrane would host several
million graphene unit cells, sufficient to minimize finite-
size boundary effects and access fairly complex fractions α
in the interior. Our calculations lack entropic contributions
and are thus for T ¼ 0; the maximum temperature at which
a given fraction can be observed should be on the order of
the width of the chemical potential span of that fraction,
∼100 K for simple fractions such as 1=2, 1=3, 1=4, 2=5,
and 1=9 and ∼10 K for more complex fractions such as
11=48, 13=30, and 16=35. At such cryogenic temperatures
the vapor pressure of potassium is extremely low, so
exchange with a reservoir is not possible on experimental
time scales. The appropriate ensemble is then fixed N, not
fixed chemical potential, perhaps including anneal cycles
(or electromigration from in-sheet currents) to speed up the
approach to equilibrium.
Many of the phenomena discussed here for the specific

case of potassium on graphene are actually generic geomet-
rical effects for a pair of opposing weakly coupled adsorbate
systems. The chemical potential difference across the barrier
acts as an effective field that controls the imbalance in
coverage between the two sides. In the case of alkali or
graphene, the operation of two distinct adsorbate-adsorbate
interactions—one sensitive (Coulombic) and one insensitive
(band filling) to which side the adsorbate is adhered to—
creates a hierarchy of energy scales which separates the
dynamics of the superlattice index n from that of the
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fractional coverage imbalance α. This hierarchy then gen-
erates multiple parallel devil’s staircases, each for a different
n and of a different slope. The need for a suspended
membrane suggests that intrinsic quenched disorder will
beweak, and thus there are prospects to observe fine-grained
phase behavior, if the system can equilibrate on experimental
time scales at the cryogenic temperatures needed to resolve
discrete steps in the staircase.
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