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The nonlinear Schrédinger equation, used to describe the dynamics of quantum fluids, is known to be
valid not only for massive particles but also for the propagation of light in a nonlinear medium, predicting
condensation of classical waves. Here we report on the initial evolution of random waves with Gaussian
statistics using atomic vapors as an efficient two dimensional nonlinear medium. Experimental and
theoretical analysis of near field images reveal a phenomenon of nonequilibrium precondensation,
characterized by a fast relaxation towards a precondensate fraction of up to 75%. Such precondensation is
in contrast to complete thermalization to the Rayleigh-Jeans equilibrium distribution, requiring prohibitive

long interaction lengths.
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Bose-Einstein condensation (BEC) has been reported in a
variety of quantum systems, such as ultracold atoms and
molecules [1], exciton polaritons [2—4], or photons [5],
where the bosonic character of the particles is crucial. On the
other hand, it is known that an ensemble of classical waves
can exhibit a phenomenon of condensation, whose thermo-
dynamic properties are analogous to those of the genuine
quantum BEC, despite the classical nature of the system
[6-15]. Indeed for waves traveling in random directions in a
nonlinear medium, wave thermalization and condensation
can occur. Such spontaneous formation of large scale
coherent structures is encountered in many fields of physics,
such as astrophysics, low-temperature condensed matter,
hydrodynamics, plasma physics, and optics. As a remark-
able fact, in spite of its formal reversibility, a nonintegrable
Hamiltonian system can exhibit self-organization induced
by its natural thermalization towards the equilibrium state
[6-10,12,14-20]. Wave condensation is a spectacular exam-
ple of this type of self-organization processes, which results
from the divergence of the classical Rayleigh-Jeans equi-
librium distribution.

Here we present an experimental system allowing us to
study the time evolution of such wave condensation in two
dimensions. In contrast to ultracold atom experiments, the
wave under consideration is the electromagnetic field of a
laser beam, rendered spatially incoherent by passing through
a diffuser. At variance with many ultracold atom experi-
ments, we also consider a situation here without an external
potential.

An important aspect of this experimental work is the
study of fast relaxation to out of equilibrium states in the
initial process of two-dimensional thermalization. Indeed,
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achieving complete thermalization and condensation of
random nonlinear waves through nonlinear optical propa-
gation is known to require prohibitive large interaction
lengths [17-19]. The existence of fast relaxation to out of
equilibrium states is an open problem that is attracting a
growing interest in different research communities [21-24],
including long range interacting systems, where fast
relaxation occurs towards quasistationary states [25,26]
or one-dimensional, nearly integrable quantum systems,
where experimental signatures of prethermalization have
been observed [27-29]. At variance with the usual
approach characterizing wave condensation in the far field
spectrum, here we identify a fast initial relaxation through
the analysis of the optical near field, which reveals the
existence of a phenomenon of precondensation that occurs
far from thermal equilibrium for short propagation lengths.
Our work thus contributes an experimental observation
(supported by numerical simulations) of fast relaxation to
out of equilibrium states.

The nonlinear Schrédinger equation (NLS) describing
the experiment can be rewritten as [30]:
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where V is the gradient in the transverse surface section of
the beam r = (x, y), while the longitudinal variable z plays
the role of the time evolution. The wavelength of the optical
wave is A = 2x/ky, and y describes the strength of the
nonlinearity.

The incident speckle field is characterized by a trans-
verse correlation length ., which also determines the
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initial transverse momentum distribution. The healing
length denotes the relevant transverse length scale for
which linear and nonlinear effects are of the same order
A = +/zn1/(2ky), wWhere zy; = 1/(yl,) is the nonlinear
length scale, and I, = (|y|?) is the intensity averaged over
the relevant transverse surface of the beam (see below). In
this Letter, we consider defocusing nonlinearities (y > 0)
corresponding to repulsive interactions. We recall that, in
addition to the intensity /, (‘particle number’), the NLS
Eq. (1) also conserves the total energy (Hamiltonian)
H =FE + U, which has a kinetic (linear) contribution
E(z) = (1/2ko) [|Vw|*dr, and a nonlinear contribu-
tion U(z) = (y/2) [ |w|*dr.

We stress that this type of classical wave condensation
occurs in the spatial frequency domain and at the same
wavelength as that of the incident laser. This is in contrast to
the condensation of photons reported in [5], where the effect
of condensation also occurs for temporal frequencies and is
accompanied with inelastic light scattering via interactions
with a thermal bath. In the situation considered here, no
thermal bath is present; we deal with a microcanonical
statistical description, where the total energy H plays a role
analogous to the temperature (note that, in analogy with
kinetic gas theory, the kinetic energy E(z) provides a natural
measure of the amount of randomness in the incoherent
wave). This is a key difference with respect to the broader
notion of condensation used to characterize different phe-
nomena in optical cavities, which are inherently forced-
dissipative systems [4,43-47]. The possibility to engineer
the initial conditions for the nonlinear propagation illustrates
the potential of this experiment to explore novel regimes of
the universal two dimensional NLS equations.

The experimental setup is depicted in Fig. 1. The output
of a 1 W fibre laser, tuned below the D2 line of Rb at
780 nm (allowing for defocusing nonlinearities [30]), is
used to realize a speckle field by passing through a diffuser
providing a Gaussian distribution of incident wave vectors
in the transverse plane. The correlation length of the
speckle field can be adjusted by changing the size of the
illumination area on the diffuser (see Fig. 1). This allows us
to tune the kinetic contribution E(z = 0). This speckle field
is then sent onto the atomic vapor with a Gaussian envelope
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FIG. 1. Experimental setup. After passing a first lens (L1) a
1 W laser is impinging on a diffuser (D) creating a speckle field at
the input face of a heated atomic vapor cell containing rubidium
atoms. The output field is imaged on a CCD camera using a
second lens (L2) with focal distance f.

on the order of w,, ~5 mm and the average intensity /,
around the center of the beam is thus proportional to the
total power I < P/ wgp. The nonlinear medium consists of
a L =7 cm long heated vapor cell containing a natural
mixture of rubidium atoms. By adjusting the temperature of
the cell, we can vary the atomic density p,, of the atoms by
several orders of magnitude. The narrow atomic resonances
allow efficient control of the linear index of refraction and its
nonlinearity is due to the excited state saturation, which can
be tuned by changing the incident laser frequency w; away
from the atomic resonance w, by A = w; —w, or by
adapting the power of the incident laser beam. We are thus
able to realize a nonlinear phase shift up to ®@y; =
koLAn = 20x, with a nonlinear index of refraction of An =
207/ (koL)~107*, and a transmitted power larger than
70%, so that zy;, = L/207 ~ 1 mm and A ~ 10 um [30].

The light transmitted after nonlinear propagation can be
analyzed either in real space (near field) through imaging
onto a CCD camera (see Fig. 1) or by investigating the (far
field) momentum distribution. Experimental measurements
of the far field spectrum are delicate and extremely
sensitive to details of the optical setup and detection
scheme [48]. At variance with [14], our analysis is based
on near field measurements, which will be shown to
provide the appropriate framework to define the notion
of “non-equilibrium precondensation.”

In Fig. 2, we illustrate the experimental results of the near
field data for increasing values of L/zy;, obtained by
changing the nonlinear distance z,; at constant L. As the
laser intensity in the wings of the Gaussian envelope vanishes,
the nonlinear interaction is prominent only in the central part
of the speckle field. We therefore analyzed the near field
intensity by performing spatial averaging ({.)) within a
sufficiently small region of interest of the beam, where the
statistics of the random wave are almost homogeneous.

For a very far detuned laser, inducing a vanishing
nonlinearity, the transmitted intensity distribution P(I)
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FIG. 2. Near Field Speckle: (a)-(c) near field images for
L/zyy =0, 3.5z and 14.47z; (d)—(f): corresponding intensity
histograms, showing the emergence of a nonzero value for the
maximum of P(I) with corresponding precondensation fractions
ny: (d) ng =0, (e) ny/Iy = 0.5, (f) ng/I, = 0.7. The dotted black
line refers to the exponential (Gaussian statistics), the dashed red
line is a fit to the probability density (2).
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exhibits an exponential decrease [see Fig. 2(d)], as
expected for random waves with Gaussian statistics. By
increasing the nonlinearity, the probability distribution
strongly deviates from Gaussianity, and the maximum of
P(I) gradually shifts away from I = 0 [see Fig. 2(f)]. Such
a deformation of the distribution is a robust phenomenon
that also occurs for non-Gaussian heavy tailed statistics.
Also, note that similar deformations of the probability
density have apparently been reported in 1D optical
systems [49-51]. However, the 1D NLS equation is
integrable and does not exhibit thermalization or precon-
densation, so that the 1D probability density P(I) is of a
different nature than in 2D [30].

Analogous with BEC, the deformation of the probability
distribution in Fig. 2 reflects a reduction of intensity
fluctuations that precedes the establishment of long-range
phase coherence [52,53]. We analyze the transmitted near
field distribution by decomposing the field into a homo-
geneous (plane wave) condensate component and an inco-
herent component with statistical Gaussian fluctuations,
w(r,z) = \/ng + ¢(r, z). Although the coherent component
does not refer to a purely homogeneous plane wave, such a
decomposition proves robust and relevant to our analysis
[30]. The intensity distribution P(I) is given then by:

1+n
e = IENr o
Io—ny ~°"\dp—no)’

where Z,(x) is the modified Bessel function of zeroth order
and Iy = (I).Inthelimitny — 0, the distribution (2) reduces
to a pure exponential that characterizes a Gaussian field,
P(I) = exp(=I/1y)/I,. In the opposite limit, ny/ly — 1,
one obtains P(I) = 6(I — I,y) as expected for a pure con-
densate plane wave solution. According to (2), the precon-
densate is simply related to the variance of the intensity
fluctuations, ny/I, = \/2 — (I*)/I3, which, by energy con-
servation, are related to the prethermalized kinetic energy.
Note in Fig. 2 that the intensity distributions observed in our
experiment remain broad. This invalidates the standard
Bogoliubov approach [1,23,54], which requires a sharp
peaked intensity histogram around /.

We stress the fact that Eq. (2) does not require the field to
be in a thermal equilibrium state, so that the probability
density (2) is valid even far from equilibrium. This is in
contrast with the equilibrium probability density that is
derived on the basis of equilibrium statistical mechanics,
see Ref. [50]. Actually, the precondensation effect occurs
very far from thermal equilibrium and does not require the
establishment of an equilibrium state, i.e., the Rayleigh-
Jeans spectrum. This is a striking difference with the usual
equilibrium condensation arising from the divergence of
the Rayleigh-Jeans distribution, featured by a marked peak
at k =0. We recall that complete thermalization to the
Rayleigh-Jeans equilibrium spectrum requires extremely
long propagation lengths that are not accessible

experimentally, as revealed by numerical simulations (see
Fig. 4) or through the analysis of nonequilibrium kinetic
equations [17]. At variance with this fully developed
equilibrium condensation, here we identify a non-equili-
brium precondensation effect that is characterized by a fast
relaxation of ny/I, for small propagation lengths available
experimentally. Surprisingly, this initial stage of precon-
densation, featured by an accumulation of relatively long-
wavelength modes around & = 0, provides a good indication
for the final condensate fraction at Rayleigh-Jeans thermal
equilibrium.

We report in Fig. 3(a) the precondensate fraction, extracted
by fitting the probability distribution (2) to the experimental
intensity histogram, as a function of the effective propagation
distance L/zy; . One clearly observes a continuous increase
of ny /I, for different values of the initial speckle correlation
length. The Hamiltonian evolution of the random wave can
be understood in a microcanonical statistical description,
where the total energy H is the relevant parameter in the
absence of an external heat bath governing the temperature
for a canonical description. Accordingly, we have studied the
transition to precondensation by varying the energy H, while
keeping constant the “number of particles” (I, fixed). Such a
transition is reported in Fig. 3(b) as a function of a
dimensionless Hamiltonian, which can be conveniently
expressed in terms of the ratio of the healing length A and
the initial correlation length 6.: H = 1 + (A/o,)? [30]. This
representation shows that the nonlinear evolution consists
of an exchange between the initial linear contribution
(E)y  1/02%, and the initial nonlinear contribution (U), o
yI% of the Hamiltonian. This total energy can be tuned in our
experiment by either changing the correlation length .., or
the nonlinear index of refraction (by changing the laser-atom
detuning or the laser intensity). As a remarkable result,
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FIG. 3. Precondensate fraction at the constant laser power

(P =1 W) and sample length (L =7 cm): (a) as a function of
propagation distance L/zy; for different values of the speckle
correlation length .. The nonlinear length z; is varied via the
laser frequency A. (b) As a function of A/o., obtained by
changing the healing length A via the laser detuning for various
correlation lengths o, (full symbols) or by changing the corre-
lation length o, at constant detuning and corresponding healing
length A =40 um (gray circles). Error bars are derived from
uncertainties of the nonlinear phase calibration and from fitting,
respectively.
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the precondensate fraction seems to only depend on the
ratio between the linear and nonlinear contributions,
(E)o/{U)y = (A/c,)*. We report in Fig. 3(b) ny/I, as a
function of (A/es.)? for various different initial correlation
lengths and different values of the nonlinear interaction. The
collapse of the data to an almost unique universal curve is a

good indicator of the relevance of H =1+ (A/6,.)? to
describe precondensation. Note that the dispersion of the
different curves may be ascribed to the impact of a nonlocal
nonlinearity [55,56].

Numerical simulations of the NLS Eq. (1) show that the
precondensate fraction increases in a significant way in the
initial stage [see Fig. 4(a)], a feature that can be described
analytically: no/Iy = 2v2(A/o.)(z/zyr) [30]. Note that,
as compared to the theory and simulations, the experimental
results show a delay for the initial growth of ny/ 1, a feature
that can be associated to a first correction of a nonlocal
nonlinearity [30]. The growth of /I, then rapidly saturates
to a quasistationary value after few nonlinear lengths zy; .
This fast process is characterized by a transfer and sub-
sequent equilibration of the kinetic (£) and nonlinear (U)
energies to their prethermalized quasisteady values, which
in turn determine the amount of precondensate fraction
no/Iy [30]. In marked contrast to such a short-time relax-
ation of E and ny, the spectrum of the random wave exhibits
a very slow thermalization to equilibrium. This is revealed
by the far-field, zero-momentum condensate nff =n(k=0),
whose relaxation to equilibrium requires several thousands
of nonlinear propagation lengths, see Fig. 4(b) (blue line).

This slow relaxation is set by the photon-photon colli-
sion rate scaling as 1/y? [17], whereas the nonlinear length
zyy, scales as 1/y (reminiscent of the chemical potential in
BEC). The far-from equilibrium nature of the preconden-
sation process is also evidenced by the fact that the system
does not exhibit a long-range phase order, as it would be
expected for the thermalized 2D NLS equation below the
Berezinskii-Kosterlitz-Thouless transition [57,58]. Indeed,
precondensation is characterized by a fast decay of the
correlation function [30], in contrast with the power-law
behavior found at equilibrium. This means that precon-
densation does not refer to a “quasi-condensate” in the
sense of the Berezinskii-Kosterlitz-Thouless theory [58].

Precondensation is characterized by an accumulation of
particles (power) toward k ~ 0, as revealed by the far-field
spectrum (momentum distribution) in Fig. 4(c). Observe
that this strongly nonlinear effect ((E), < (U),) cannot be
described by a weak turbulence kinetic approach [8,16,20].
This shows an important property, namely the multimode
nature of the effect of precondensation. At variance with
ngF, that refers to the pure zero-momentum occupation,
here the precondensate refers to a slowly varying coherent
field y.(r, z), characterized by low-frequency components
k <1/A. The conventional decomposition of the field
discussed above through Eq. (2) can then be refined by
the substitution /ng—y, (r.2), ie., w(r.z)=w.(rz)+
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FIG. 4. Numerical simulations of precondensation: Preconden-
sate fraction ny/ I, (red lines), zero momentum population n5F /I
(blue lines) and normalized kinetic energy E (magenta lines) in
early stage (a) and in the long-term evolution (b). The dashed dark
lines in (a) denote the analytical prediction for small z, in (b) the
thermal equilibrium state. (¢) Momentum spectrum of the initial
wave at z = 0 (black line) and at z = 100z, (blue line), showing
an accumulation of particles “near” k ~ 0. (d) Near field intensity
histogram: the initial field (dark dashed line), after z = 100z,
(green circles) and the fit of Eq. (2) (green line), and corresponding
intensity histograms after z = 1.5 x 10°z,,, (in blue).

¢(r,z), where ¢(r, z) denotes the rapidly varying incoher-
ent component and ny = (|y.|?>). Importantly, the multi-
mode analysis reveals that the bare intensity distribution (2)
is well corroborated by a refined multimode intensity
distribution, as revealed by the remarkable agreement
between the simulations and the bare intensity distribution
(2), see Fig. 4(d) at z =100zy; and at full equilibrium
(z = 150 x 103zy,). In addition, precondensation proves
robust with respect to the intensity moments ((/7)) used to
compute ny/I,, or the frequency cutoff that is known to
regularize the ultraviolet catastrophe inherent to classical
waves. These aspects validate the simple model (2) used to
analyze precondensation [30].

In conclusion, we have reported the observation of a
phenomenon of non-equilibrium precondensation of
classical waves in two dimensions. This experiment can
be extended to study a classical analogue of BEC after a
sudden quench below the critical temperature (in 3D) [59-
62], the Berezinskii-Kosterlitz-Thouless transition (in 2D)
[57], or the formation of nonthermal fixed points [63,64].
The possibility of shaping the initial conditions further
allows the study of the growth of long range coherence
using, e.g., a Gaussian beam with small fluctuations corre-
sponding to nonlinear filtering of high frequency compo-
nents [65], in relation with spatial beam self-cleaning in
multimode fibers [66,67]. This experimental platform also
paves the way to the study of a variety of phenomena in the
key area of quantum fluids of light, such as superfluid
behaviors [3,68-71], strongly nonlinear shocks [72,73],
nonlocal effects [55,56], the development of turbulence
cascades [8,9,74], or quench dynamics in the framework of
the Kibble-Zurek mechanism [75].
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