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A new fluid encapsulation structure, which is characterized by a bubble encapsulating a drop, is reported.
It is stably generated from the breakup of a liquid column inside a bubble, which is achieved via the injection
of Taylor flow into liquid. A model is constructed to explain the liquid column breakup mechanism. A
dimensionless control guidance, which enables the possibility to create different-scale capsules, is provided.
The encapsulation stability in external flows is verified, and amethod to trigger the release of the encapsulated
drop is provided, which supports potential applications with great advantages such as fluid transport.
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Fluid encapsulation, which is the physical phenomenon
of one fluid encapsulating another fluid, can be classified
into three major branches: “air in liquid,” “liquid in liquid,”
and “liquid in air,” as shown in Fig. 1(a). The air in liquid
structure is most well known as soap bubbles with liquid
films that encapsulate gas pockets. This structure also forms
when a bubble is encapsulated in a drop [1–3]. The liquid in
liquid structure is commonly called an emulsion, which is
produced by a drop of one liquid encapsulating a smaller
drop of a second liquid [4,5]. Another case is called drop
coating, where the drop is coated with a liquid film with a
thickness of only approximately 1=103 of the drop diameter
[6]. The liquid in air structure is commonly known as
antibubbles, where the drop is encapsulated by an air film
with a thickness of only approximately 1=104 of the drop
diameter [7,8]. Thus, the known encapsulation structures
can also be classified into two groups based on the ratio
of the shell thickness h to the overall diameter D: thin
shell (h=D < 1=103) and thick shell (h=D > 1=10).
Currently, the encapsulation of drops by thick air shells
is the last unknown area in the fluid encapsulation map.
The interesting phenomenon called “drop encapsulated in

bubble” was discovered when we developed immersion
lithographymachines. The air phase here,which encapsulates
the drop, is no longer a thin film but a bubble. It is the exact
structure of a drop encapsulated by a thick air shell, which is
an important supplement for fluid encapsulation phenomena.
As shown in Fig. 1(b), this encapsulation structure is
generated by the injection of Taylor flow into bulk liquid:
first, a gas slug forms a bubble; then, the following liquid slug
penetrates the bubble and evolves into a liquid column;
finally, the liquid column breaks up into a drop which is
encapsulated in the bubble. The Taylor flow is formed by the
development of the air-liquid mixture in a vertical micro-
channel (inner diameter d ¼ 1.0=0.5=0.3 mm), which is
analogous to the flow field in immersion hoods studied in
our previouswork [10,11]. The gas and liquid flow rates were

adjustedwithin 10–80and3–20 mL=min.Experimentswere
performed on aqueous glycerol solutions that contained
0–70% (mass fraction, wg) glycerol. As shown in Fig. 1(c),
the capsules were continuously produced with consistent
features in a long period of 3886 ms.
The mechanism of a bubble encapsulating a drop is

related to an intriguing question: how does a drop formation
process complete inside a bubble? First, as shown in
Fig. 2(a), a liquid slug reaches the nozzle to induce the
bubble detachment and subsequently penetrates the bubble.
A liquid column erects in the bubble, whose morphology is
similar to the liquid column formed when a drop partially
coalesces at a liquid interface [12]. The classic mechanism of
drop formation from a liquid column is through Rayleigh-
Plateau instability [13]. However, for short liquid columns
that occur in partial coalescence, the wavelike instability
cannot be observed, and simulations were performed to
prove that breakup would not occur without an initial
upward motion [14]. The simulations can be verified by
our experiments: as shown in Fig. 2(b), the liquid column
that erects on the liquid surface stops rising upward at
time 0 and coalesces into the liquid surface before the
breakup. Additionally, in the breakup situations as shown in
Figs. 2(c)–2(f), the wavelike instability never occurs along
the liquid columns. Thus, the notion that Rayleigh-Plateau
instability causes the breakup can be denied.
The liquid column breakup is determined by the com-

petition between two surface-tension-driven processes,
radial necking and axial contraction, which also occur in
partial drop coalescence [14] and free liquid column
breakup [15]. However, in partial coalescence, the radial
necking critically depends on the early dynamics when a
drop gradually evolves into a column. Compared with free-
liquid columns, the liquid columns in Fig. 2 should be
classified as “single-ended” columns, which connect with a
liquid surface and have only one free end. The dynamics
of a liquid column is controlled by the surface tension,
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viscosity, and inertia. The ratio of surface tension to
viscosity is expressed by the Ohnesorge number
Oh ¼ μ=

ffiffiffiffiffiffiffiffiffi

ρσR
p

, where μ, ρ, and σ are the viscosity, density,
and surface tension of the liquid, respectively, and R is the
liquid column radius. When the liquid column is suffi-
ciently long, the breakup is only determined by Oh [16].
For short columns, the aspect ratio L0 also plays an
important role in determining the breakup. The liquid
column in Fig. 2(b) is notably low in Oh but still fails
to break up without a sufficiently large L0. The encapsu-
lation demands an effectively stretched single-ended liquid
column with a sufficiently large L0 at its Oh to break up
inside a bubble. As shown in Figs. 2(c) and 2(d), the liquid
column evolves into a liquid bridge across the bubble and
stretches as the bubble rebounds. The liquid bridge pins
continually shrink until the smaller pin breaks up, and an
effectively stretched single-ended liquid column is pro-
duced. In some situations, as seen in Fig. 2(e), the liquid
column can be stretched to a sufficiently large L0 by liquid
convergence to its top. In high-Oh conditions in Fig. 2(f),
the liquid column demands a much larger L0 to break up.
When a single-ended liquid column is formed, the radial

necking and axial contraction processes begin to compete.

The total time of the radial necking process can be scaled
with a characteristic time. Here, we define a critical
Ohnesorge number OhC. When Oh > OhC, the viscosity
and surface tension dominate, which gives the character-
istic time tv ¼ μR=σ. When Oh < OhC, the inertia and
surface tension dominate, which gives the characteristic
time ti ¼ R

ffiffiffiffiffiffiffiffiffiffiffi

ρR=σ
p

. Thus, the total time is tn ¼ αtv when
Oh > OhC and tn ¼ βti when Oh < OhC, where α and β
are prefactors. Encapsulation events are plotted in terms of
R and tn in Fig. 3. The expression neglecting viscosity
(Oh < OhC) is plotted with a solid line consistent with the
experiment data when β ¼ 3.2. The expression neglecting
inertia (Oh > OhC) is plotted with dotted lines and con-
sistent with the experiment data at all viscosities when
α ¼ 62. The prefactors α and β indicate the time distances
from the singularity where the viscous and surface tension
forces are balanced, and the singularity where the inertial
and surface tension forces are balanced. Compared with
the existing breakup models, when we use the slender-jet
equations [17], we can predict that α ≈ 33, which is smaller
than the situation of single-ended columns in our study;
using the full inviscid equations [18], we can predict that
β ≈ 3, which corresponds to the value obtained in our study.

FIG. 2. (a) Injection of Taylor flow into the liquid makes a liquid column penetrate a bubble; (b) the liquid column fails to break up
with a small aspect ratio L0; (c)–(f) at various Oh, the encapsulation structure is generated by the breakup process of a liquid column
with a sufficiently large L0.

FIG. 1. (a) Drop encapsulated in bubble, which is the last unknown area in the fluid encapsulation map. (b) Diagram of the experiment
setup. (c) Stable production of uniform capsules (see Supplemental Material for the multimedia view [9]).
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By assuming αtv ¼ βti, the critical Ohnesorge number is
obtained: OhC ¼ β=α ¼ 0.052.
For an asymmetric free liquid column, the axial length

scale is significantly larger than the radial length scale,
particularly near the breakup [19]. The axial contraction
velocity does not depend on the viscosity outside the
viscous length scale Lv ¼ μ2=ρσ [20], which is below
4.7 μm in this study, so it only relates to the Taylor speed
VT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ=ρR
p

[21]. When the capillary pressure is
included, the axial contraction velocity is given by Va ¼
VT=

ffiffiffi

2
p ¼ ffiffiffiffiffiffiffiffiffiffiffi

σ=ρR
p

[20]. Both free ends move to the
midpoint at identical speed, so the liquid column is
commonly computed in terms of only one end. The
single-ended liquid column in drop-on-demand inkjet
printing, which consists of a spherical head followed by
a column, is considered equivalent to a double-length free-
liquid column [22]. In our opinion, this equivalence is only
reasonable when the head is significantly more massive
than the column, which guarantees that the mass point
locates under the column. In our study, the column
connects with the bulk liquid, so this equivalence is
certainly applicable. Therefore, the total time of axial
contraction is tc ¼ l=Va ¼ l

ffiffiffiffiffiffiffiffiffiffiffi

ρR=σ
p

, where l is the column
length. The criterion for encapsulation is that the liquid
column breaks up before the axial contraction ends, so the
critical encapsulation conditions are determined by assum-
ing tn ¼ tc. The aspect ratio is L0 ¼ L=2R ¼ l=R, where L
is the length of the equivalent free liquid column, and
L ¼ 2l. At every Oh there exists a critical aspect ratio L0C,
beyond which the encapsulation should occur. When
Oh < OhC, we assume tn ¼ βti ¼ tc, giving L0C ¼ β.
When Oh > OhC, we assume tn ¼ αtv ¼ tc, giving

L0C ¼ αOh. The experiment results are plotted in terms
of L0 and Oh in Fig. 4. The prediction from the model is
plotted as thick curves, and the model in Ref. [22] is also
shown (thin line) in Fig. 4. For comparison, our model is
more reasonable to neglect viscosity below OhC. When
Oh < OhC, there is a lower limit for L0C, which is irrelevant
to Oh and consistent with the value predicted by the model:
3.2, which is identical to β. When Oh > OhC, the exper-
imental L0C is also reasonably consistent with the model
and linearly increases with Oh at a rate of 62, which is
identical to α.
Each single-ended liquid column with the required

L0 > L0C for breakup is generated by a liquid column
impacting on a bubble. In addition, there is a limit L0M on
the increase in aspect ratio in Fig. 4, which is also attributed
to the impact dynamics. The control parameters that affect
the impact dynamics are the liquid column velocity ν, liquid
viscosity μ, column diameter (upon the impact) d, and
bubble radius RB (calculated from the gas slug volume).
When μ varies, the critical encapsulation events are plotted
in terms of v − d=RB in Fig. 5(a). In the impact process,
the penetration of the liquid column into the bubble is
driven by the inertia of the liquid column while resisted by
the pressure in the bubble. The liquid column inertia is
described by the Reynolds number Re¼ ρvd=μ, which is
the ratio of inertia to viscosity effect. The difference
between the bubble interior pressure PB and the bulk
liquid pressure PL is ΔP ¼ PB − PL ¼ 2σ=RB. Hence,
the resistance force is ΔPðπd2=4Þ ¼ πσd2=2RB. Scaled by
the bubble surface tension force, the resistance effect is
ðπσd2=2RBÞ=ð2πσRBÞ ∼ d2=R2

B. Thus, the impact dynam-
ics (i.e., penetration of the liquid column) can be

FIG. 3. Encapsulation events plotted in terms of the liquid
column radius R and radical necking time tn (circle: Oh < OhC;
triangle: Oh > OhC and wg ¼ 60%; star: Oh > OhC and
wg ¼ 67%; square: Oh > OhC and wg ¼ 70%). The solid line
indicates the model tn ¼ βti when Oh < OhC, and the other three
lines indicate the model tn ¼ αtv when Oh > OhC.

FIG. 4. Phase diagram showing the outcome of the experiments
(solid circle: encapsulation; open circle: no encapsulation) in
terms of Oh—L0. The thick solid line indicates our model of
the critical aspect ratio: L0C ¼ β for Oh < 0.052 and L0C ¼ αOh
for Oh > 0.052. The light black line is the model in Ref. [22]. The
light dashed line indicates the limit L0M on the increase in aspect
ratio. The thick dashed line indicates the location of OhC.
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characterized by the ratio of driving to resistance effect
using Re=ðd2=R2

BÞ. The Weber number of the liquid
column (We ¼ ρdv2=σ) ranges from 1.86 to 106. In this
studied range, the Weber number does not play a signifi-
cant role in the outcome of the impact. In Fig. 5(a), the
experiment results are consistent with the relation of
Re∝ d2=R2

B. With different viscosities, the experiment
data at lower and upper bounds for encapsulation are fitted
in terms of v ¼ Aðμ=ρdÞðd2=R2

BÞ, where A is a prefactor.
At the lower bounds where A ≈ 550, the ratio of driving to
resistance effect enables the liquid column to be stretched
to L0 ¼ L0C; when A < 550, the liquid column with
L0 < L0C coalesces into the bulk liquid below the bubble.
At the upper bounds where A ≈ 1000, the increase of L0

ceases close to L0M; when A > 1000, the entire liquid
column passes through the bubble and coalesces into the
bulk liquid above the bubble. Thus, as shown in Fig. 5(b),
to produce this encapsulation structure, we can control the

Taylor flow to satisfy 550 < ReðR2
B=d

2Þ < 1000, where
the generated single-ended liquid column at every Oh
can satisfy the breakup criterion of L0C < L0 < L0M. The
relation between RB and d indicates the predictive
capability to further scale down the capsule size.
For potential industrial applications, the ability of this

encapsulation structure to maintain stability in external
flows has been verified, and a method to trigger the release
of the encapsulated drop is provided. Emulsions have been
applied in industrial activities such as drug delivery [23]
and material processing [24]. However, when delivered in a
shear flow, the inner drop is stretched in tandem with the
outer drop and eventually breaks up [25,26]. Antibubbles
have aroused great interest for potential applications such
as fluid transport [27]. However, the breakup of the air film
is immediately triggered under external pressures as low as
2 kPa [28,29].
The encapsulation stability faced with a sudden shear flow

is shown in Fig. 6(a). Although the bubble severely deforms,

FIG. 5. (a) Critical encapsulation events plotted in terms of v − d=RB at different viscosities (triangle: μ ¼ 1.81 mPa s; circle:
μ ¼ 5.08 mPa s; square: μ ¼ 19.2 mPa s). The solid, dashed, and dotted lines indicate the encapsulation region bounds with different μ.
(b) Phase diagram of the control guidance in terms of ReðR2

B=d
2Þ to produce single-ended liquid columns with L0C < L0 < L0M at

any Oh.

FIG. 6. (a) Encapsulation stability with a sudden shear flow. (b) Release of the encapsulated drop by depositing the capsule on a
surface.
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the drop continues being encapsulated until the shear rate _γ
increases to 602=s. The outer shell (bubble) does not break
up like an antibubble, and the inner core (drop) does not
deform with the outer shell like an emulsion. As shown in
Fig. 6(b), when a capsule deposits on a liquid or solid surface
(t ¼ 0), the bubble stops deforming, and the encapsulated
drop stops bouncing. The drop rolls on the bubble surface
figuratively like a pendulum that swings increasingly slowly
until it deposits at 167 ms. After a deposition period of
32 ms, the drop begins to coalesce into the surrounding
liquid. The drop fully merges at 308 ms through a series of
partial coalescence processes. Thus, the encapsulation sta-
bility relies on bubble deformations, which continuously
produce relative displacements between the bubble and the
drop and consequently prevents the drainage of the inter-
stitial air layer. The capsule can be stably transported even in
strong shear flows, and we can control the encapsulated drop
to be quickly released by making the capsule deposit on a
surface. Hence, we can expect its potential applications with
great advantages such as fluid transport.
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