
 

Scattering from Artificial Piezoelectriclike Meta-Atoms and Molecules

Leonid Goltcman and Yakir Hadad*

School of Electrical Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

(Received 6 September 2017; published 30 January 2018)

Inspired by natural piezoelectricity, we introduce hybrid-wave electromechanical meta-atoms and
metamolecules that consist of coupled electrical and mechanical oscillators with similar resonance
frequencies. We explore the linearized electromechanical scattering process and demonstrate that by
exploiting the hybrid-wave interaction one may enable functionalities that are forbidden otherwise. For
example, we study a dimer metamolecule that is highly directional for electromagnetic waves, although it is
electrically deep subwavelength. This unique behavior is a consequence of the fact that, while the
metamolecule is electrically small, it is acoustically large. This idea opens vistas for a plethora of exciting
dynamics and phenomena in electromagnetics and acoustics, with implications for miniaturized sensors,
superresolution imaging, compact nonreciprocal antennas, and more.
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Introduction.—The direction of arrival of an incoming
wave can be estimated using the phase difference between
the received signal at two adjacent antennas separated by a
distance D; this establishes the basic direction-of-arrival
sensor. Its sensitivity is maximized when D is set to be half
of the wavelength at the desired frequency and severely
deteriorates as D becomes subwavelength [1,2]. This is
another consequence of the diffraction limit [3] that
imposes stringent constraints on the resolution of far-field
imaging. In recent years, metamaterials have acquired a
reputation for achieving effective material functionalities
that do not exist in nature [4,5] and for violating funda-
mental bounds, such as due to time-reversal symmetry
[6–12]. In this Letter, we propose a paradigm of hybrid-
wave electromechanical metamaterial that can create a
synthetic sense of length and, thus, effectively transform
an electrically small structure to behave as if it is electri-
cally large. Hybrid-physics metamaterials have already
been explored for several purposes, for instance, to create
real time reconfigurable and tunable devices [13,14],
utilizing thermal [15,16], electrostatic [17–19], magnetic
[20], and optical [21–23] actuation. In a different context,
hybrid-physics optomechanical crystalline structures,
known as phoxonic crystals [24], have been proposed as
a means to achieve strong nonlinear photon-phonon
interactions via simultaneous infrared-photonic and giga-
hertz-phononic Bragg resonances. These and similar opto-
mechanical structures have been proposed for nonlinear
metamaterials [25], tunable gigahertz resonators [26–28],
quantum processing [27,28], and as a means for studying
many-body dynamics [29–31], as well as for long-range
synchronization [32]. Recently, the inherent nonlinearity of
cavity optomechanics has been utilized to obtain sponta-
neous symmetry breaking [33] and magnetless nonreci-
procity [34,35]. In contrast to previous work, here, we
introduce meta-atoms that involve hybridization of

electromagnetic and acoustic resonances at the same
frequency and in a linearizable configuration. After mod-
eling the electromechanical scattering process, we show
that by clustering metamolecules one may enable function-
alities that are forbidden otherwise. As an example, we
design an electrically deep subwavelength, but highly
directional, dimer metamolecule sensor.
The electromechanical meta-atom.—Wave scattering typ-

ically occurswithin one physical realm, such as in the cases of
electromagnetic scattering, acoustic scattering, elastic scat-
tering, etc. Here, however, we consider a hybrid-physics
scattering. An electromechanical (EMCL) scatterer partially
transforms an impinging electromagnetic Ei or acoustic Pi

wave into amixture of acoustic and electromagnetic scattered
waves Es and Ps, as illustrated in Fig. 1(a). This type of
scattering exists in natural piezoelectric or photoelastic
materials; however, it may be better controllable and more

(a) (b)

(c)

FIG. 1. (a) Illustration of the generalized hybrid-physics scattering
process. An electromechanical meta-atom can be excited by both
electromagnetic and acoustic fields, and it generally scatters the two
types of wave, regardless of the excitation. (b) If the resonators are
electrically and acoustically small, they compose a coupled system
of an electric dipole and an acoustic monopole. Both radiate to the
external ambient surroundings. (c) A configuration in which mutual
action between the electric current source J1 and the acoustic
pressure source V2 takes place via an EMCL meta-atom.
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efficient using artificialmaterials that involve EMCLcoupled
resonators. Such artificial materials are composed of lattices
of EMCL meta-atoms. The latter are excited by and radiate
EMCL fields. We define an EMCL field as a four-element
vector containing the three electric field components and the
scalar pressure field UðrÞ ¼ ½Ex; Ey; Ez;P�T . When an
EMCL field impinges on an EMCL meta-atom, electric
and acoustic sources are induced, as illustrated in Fig. 1(b).
Assuming that the meta-atom is small enough compared to
the wavelength of light and sound, the induced sources are
appropriately modeled by a coupled electric dipole pe and
acoustic monopole with volume V (so that its volume
velocity is U ¼ _V). These constitute the EMCL source
S ¼ ½pex; pey; pez;V�T . Generally, the coupled EMCL prob-
lem is inherently nonlinear; however, we restrict this work to
the class of problems that can be linearized under the weak
signal assumption. The induced source S is related to the
impinging field U at the meta-atom location via the linear
response matrix,

S ¼ αU; with α ¼
"
α
ee

α
ea

α
ae

α
aa

#
: ð1Þ

The diagonal terms are the common response terms in the
absence of EMCL coupling. Specifically,

α
ee

¼

2
64
αxxee αxyee αxzee

αyxee αyyee αyzee

αzxee αzyee αzzee

3
75; α

aa
¼ αaa; ð2Þ

where α
ee

is the electric polarizability that describes the
induceddipolarmoment due to an impinging electromagnetic
field and α

aa
gives the acousticmonopole volume induced by

an impinging pressure field. The off-diagonal, EMCL cou-
pling terms in Eq. (1) read

α
ea

¼ ½αxea; αyea; αzea�T; α
ae

¼ ½αxae; αyae; αzae�: ð3Þ

These terms are responsible for the direct and reverse
piezoelectriclike behavior of the meta-atom. Clearly, if the
meta-atom exhibits no practical EMCL coupling, then
α
ae

¼ α
ea

¼ 0, and, if in addition it is only electric (acoustic),
then α

aa
¼ 0 (α

ee
¼ 0).

Now, closing the loop, the field UðrÞ radiated by an
induced source S on a meta-atom at r0 is given by the
EMCL Green’s function UðrÞ ¼ Gðr; r0ÞS. Assuming that
there is no EMCL interaction in the ambient medium, G is
block diagonal and reads

Gðr; r0Þ ¼
�
G

e
ðr; r0Þ 0

0 Gaðr; r0Þ

�
; ð4Þ

where G
e
(Ga) is the electric dyadic (acoustic scalar)

Green’s function connecting pe (V) to E (P).

Fundamental constraints on α.—The linear response
matrix is subject to fundamental constraints due to reci-
procity and energy conservation. We begin with reciprocity.
Consider the hypothetical setup in Fig. 1(c) that contains an
electric current J1, an acoustic monopole with volume
velocity U2 ¼ _V2, and an EMCL meta-atom. In the absence
of the meta-atom, the interaction between the two sources is
obviously zero. However, in the presence of the EMCL
meta-atom, the electric field radiated by the current source
J1 impinges on the meta-atom and, consequently, gives rise
to scattering of both electromagnetic and acoustic pressure
waves. The latter, denoted here by P1, interacts with the
acoustic source U2, implying that this time an action
A½J1 → U2� ¼ P1U2 between the sources takes place. In
the reciprocal scenario, the acoustic source U2 acts on J1
through the scattered electromagnetic field E2,
A½U2 → J1� ¼ E2 · J1. Since we deal with a linearized
system, the mutual action between the sources should be
equal [36]:

A½J1 → U2� ¼ A½U2 → J1�: ð5Þ
Expressing Eq. (5) using the electromagnetic and acoustic
Green’s functions, we find [37]

U2Gaðr2; rsÞαaeGe
ðrs; r1ÞJ1

¼ JT1Ge
ðr1; rsÞαeaGaðrs; r2ÞU2: ð6Þ

Assuming that the medium is electromagnetically and
acoustically reciprocal, G

e
ðr; r0Þ ¼ GT

e
ðr0; rÞ [2] and

Gaðr; r0Þ ¼ Gaðr0; rÞ [36]. Then, using Eq. (6), we find

α
ea

¼ αT
ae
: ð7Þ

This symmetry is a manifestation of the principle of
microscopic reversibility [38,39] applied to the linearized
meta-atom system.
Next, we consider energy conservation. In the absence of

material losses of any kind, the power that an impinging
EMCL field U extracts for the excitation of the induced
source S on the meta-atom is equal to the total EMCL
power radiated by the meta-atom. The extracted EMCL
power reads Pext ¼ ðω=2ÞImfUHαHUg, where the super-
scriptH denotes the Hermitian transpose [37]. On the other
hand, the total radiated power reads Prad ¼ UHαHχ αU

with χ ¼ diag½I
3×3

Prad
e ; Prad

a �, where I
3×3

is the 3 by 3

unitary matrix and Prad
e and Prad

a , respectively, are the total
powers radiated by an electromagnetic dipole and an
acoustic monopole, both of unit amplitudes [37]. For a
meta-atom embedded in a homogenous medium with
permittivity and permeability ϵ and μ, respectively, and
with density ρ0, we have Prad

e ¼ μω4=12πce [1] and Prad
a ¼

ρ0ω
4=8πca [40], where ce and ca are, respectively, the

speed of light and of sound in the medium. If the medium is
more complex, the radiation terms should be corrected
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accordingly. For instance, for a meta-atom embedded in an
electromagnetically transparent, acoustic hard-wall duct
with cross section area Ad that supports only a plane wave
mode, we have Prad

a ¼ ρω2ca=4Ad [40], while Prad
e remains

unchanged. By equating Pext ¼ Prad, we find that α is
subject to

αHχ α ¼ ðω=4jÞ½αH − α�: ð8Þ

This is a generalization of the optical theorem [2–4].
Schematic realization of an EMCL meta-atom.—

Consider a parallel plate capacitor with nominal capaci-
tance C0 loaded by an inductor L to establish an electro-
magnetic resonance at frequency ωe ¼ 1=

ffiffiffiffiffiffiffiffiffi
LC0

p
.

Simultaneously, each capacitor plate acts as a membrane
that mechanically resonates at ωm ¼ ffiffiffiffiffiffiffiffiffi

k=m
p

, where m and
k are the membrane’s effective mass and stiffness, respec-
tively. We assume that the capacitor volume between the
plates is acoustically closed, and thus it responds mechan-
ically to external pressure changes. See Fig. 2(a) for an
illustration. The system is set at equilibrium by applying a
biasing voltage V0, leading to static charge accumulation,
q0 and −q0, and, thereby, to a constant Coulomb attraction
force between the plates. In the absence (presence) of the
static biasing, the spacing between the plates is d (d − x0).
Neglecting edge effects, we define the nominal capacitance
as C0 ¼ ϵcA=ðd − x0Þ, where ϵc is the permittivity between
the plates and A is the plate area.
The meta-atom can be excited by either an electromag-

netic or an acoustic wave, as illustrated in Fig. 2(a). Using
the concept of effective length in the antenna theory [1], the
impinging electromagnetic wave excitation is modeled by a
lumped voltage source, vðtÞ ¼ leffEi

xðtÞ. Here, Ei
x is the

electric field component normal to the plates and leff is the
effective length of the capacitor when viewed as an
electrically small antenna. Once excited, the meta-atom
can be described effectively by an electric dipole pe ¼ pex̂
with pe ¼ leffδq, coupled to an acoustic monopole with
volume V ¼ Aδx (volume velocity U ¼ _V ¼ A _δx) [36].
The electromechanical dynamics is inherently nonlinear

[37]. However, if the excitation is weak enough compared
to static biasing so that δq ≪ q0, then the meta-atom
response can be linearized around its equilibrium:

δ̈qþ 2τ−1e _δqþ ω2
eδq ¼ L−1½vðtÞ þ E0δx�; ð9aÞ

δ̈xþ 2τ−1m _δxþ ω2
mδx ¼ m−1½fðtÞ þ E0δq�: ð9bÞ

Here τ−1e and τ−1m are the electromagnetic and mechanical
decay rates, respectively, that include radiation, as well as
material damping, ωe and ωm are as defined earlier, and
E0 ¼ −V0=ðd − x0Þ is the static electric field between the
capacitor plates. The coupling terms in Eqs. (9) have a clear
physical meaning. In Eq. (9a), the small signal deflection
δx yields, effectively, an extra voltage source E0δx, and, in
Eq. (9b), the small signal charge δq creates an extra force
between the plates E0δq.
The charge fluctuations δq create an effective electric

dipolar moment pe ¼ leffδq, normal to the capacitor plates
(along x̂). Moreover, the displacement fluctuations δx give
rise to an effective acoustic monopole source with volume
oscillation amplitude V ¼ Aδx and volume velocity U ¼
jωV (here and henceforth, time dependence ejωt is assumed
and suppressed). Finally, the system’s linear response is
expressed in the form of Eq. (1), with

αee ¼ ðl2eff=ΔLÞ½ω2
m − ω2 þ 2jω=τm�; ð10aÞ

αaa ¼ðA2
eff=ΔmÞ½ω2

e − ω2 þ 2jω=τe�; ð10bÞ

αea ¼ αae ¼ leffAeffE0=ΔLm; ð10cÞ

and where

Δ ¼
�
ω2
e − ω2 þ 2jω

τe

��
ω2
m − ω2 þ 2jω

τm

�
−

E2
0

Lm
: ð11Þ

In this example, the meta-atom responds only to an
x-polarized electric field, and, therefore, α

ee
; α

ea
; α

ae
are

all scalars. Note the symmetry αea ¼ αae as dictated in
Eq. (7) by reciprocity. Moreover, assuming that the meta-
atom is lossless (namely, only radiation loss is considered),
using Eq. (8) we find [37]

ωℑfα−1ee g=2 ¼ Prad
e þ jαae=αeej2Prad

a ;

ωℑfα−1aag=2 ¼ Prad
a þ jαea=αaaj2Prad

e ; ð12Þ

FIG. 2. (a) A parallel plate EMCLmeta-atom, set at its operation
point by a bias voltage V0, can be excited by electromagnetic or
acoustic fields. Its EMCL small signal (linear) dispersion with
frequency is given in (b)–(d). The blue (red) line denotes the real
(imaginary) part. The continuous (dashed) line corresponds to
biasing voltage V0 ¼ 1 V (V0 ¼ 3 V). (b) The electric polar-
izability αee, (c) the acoustic response αaa, the induced acoustic
monopole due to a local acoustic pressure field, and (d) the EMCL
coupling terms αae ¼ αea, the induced electric dipole (acoustic
monopole) due to a local acoustic pressure (electric) field.
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and ℑfα�eeαeag ¼ ℑfα�aaαaeg ¼ ℑfα�eeαaag ¼ 0. The latter
three constraints are related to the mathematical structure of
α, whereas the first two constraints, given in Eq. (12), can
be solved to find the decay rates τ−1e and τ−1m . In the absence
of static biasing, V0 ¼ 0, and, therefore, αae ¼ αea ¼ 0,
implying no EMCL coupling. In this case, the relations in
Eq. (12) are reduced to the conventional constraint on the
polarizability of a small scatterer due to the optical theorem
and to its acoustic analog. By plugging Eqs. (10) and (11)
into Eq. (12) and solving for τe and τm, we get

τe ¼ ω2L=l2ePrad
e ; τm ¼ ω2m=A2

ePrad
a : ð13Þ

The decay rates are proportional to the radiated power,
and, hence, the balance between τe and τm can be consid-
erably tuned by engineering of the meta-atom ambient
medium. Since at a given frequency ω, λe ¼ 2πce=
ω ≫ λa ¼ 2πca=ω, a meta-atom whose typical size is ∼λa
will be electrically deep subwavelength ≪ λe. Therefore,
typically, the electromagnetic radiation efficiency will be
considerably lower than its acoustic counterpart, implying
that the electromagnetic resonance dominates since τe ≫ τm.
To change the balance, one may excite higher-order acoustic
multipoles that are less efficient radiators or reduce the
ambient medium density. However, the greatest control over
themeta-atom decay rates will be obtained by placing it in an
acoustic or electromagnetic duct or cavity with a suitably
engineered local density of states. This idea is demonstrated
in Figs. 2(b)–2(d), where the elements of the responsematrix
are plotted versus the frequency for the meta-atom in
Fig. 2(a), with ωe¼ωm¼2π×106 rad=s, Aeff ¼ 3.14 μm2,
leff ¼ 10 μm, m ¼ 0.42 μg, and L ¼ 1 μH, that is
embedded in an electromagnetically transparent, hard-wall
acoustic ductwith cross section areaAd ¼ 5Aeff that supports
an acoustic plane wave only. The mechanical parameters are
taken close to Ref. [41]. Here, τm is large enough, placing the
system in the strong coupling regime. The tunability by the
static bias voltage is demonstrated with V0 ¼ 1 and 3 V.
Electrically small direction-of-arrival sensor.—The

EMCL meta-atoms discussed above can be used to design
piezoelectriclike metamolecules with superior performance
due to the joint acoustical and electromagnetic properties.
As an interesting example, we design an electrically deep
subwavelength, but nevertheless highly sensitive, direction-
of-arrival sensor for electromagnetic waves. The system
consists of two meta-atoms inside a duct that is centered
along the ŷ axis and with the same parameters as used for
Figs. 2(b)–2(d). We excite the system only by an electro-
magnetic wave impinging at incidence angle θi, so that
Ui ¼ ½Ei

x; 0�T with Ei
x ¼ E0 exp½−jkeðcos θiŷ − sin θiẑÞ�

(ke ¼ ω=ce). The electric field polarization x̂ is normal
to the meta-atoms’ plates [see Fig. 3(a)]. We set the distance
D between the meta-atoms to be electrically deep sub-
wavelength D ≪ λe while acoustically large D ≫ λa. The
dynamics of the coupled system is given by

S1 ¼ α½Gðr1; r2ÞS2 þ Uiðr1Þ�;
S2 ¼ α½Gðr2; r1ÞS1 þ Uiðr2Þ�; ð14Þ

where S1 and S2 are the EMCL excitation amplitudes of the
meta-atoms located at r1 ¼ −D=2ŷ and r2 ¼ D=2ŷ, respec-
tively. TheGreen’s functions used here are given inRef. [37].
It is instructive to consider the corresponding eigenvalue
problem alongside the excitation one. To find the eigenfre-
quenciesωr, we setUi ¼ 0 and require nontrivial solutions in
Eq. (14). In the absence of the EMCL coupling, the system
reduces to a simple coupled dipole that supports two
resonances, bright and dark, with eigenfrequencies nearly
independent of D ≪ λe. In this case, an impinging electro-
magnetic planewave cannot practically excite the darkmode
but only its bright counterpart. Figure 3(b) shows the ratio
jp1=p2j (in the log scale) as a function of the incidence
angle θi and the normalized frequency Δω=ωc (where
Δω ¼ ω − ωc), around the dark resonance ωc. Even near
the dark resonance ωc ¼ 0.985 458ωm, there is neither a
practical difference between the excitation amplitudes of the
dipoles nor any effect when varying the incidence angle θi.
Here, as opposed to a conventional direction-of-arrival
sensor with two antennas separated by D ∼ λe=2 [1], the
phase difference between the received signals in the two
antennas ∼keD is extremely small, sinceD ≪ λe. However,
we boost the small phase effect by utilizing the presence of
EMCL coupling. Since the structure is acoustically large, the
number of eigenfrequencies significantly increases, and their
complex values strongly depend onD. A typical complex-ω
plane showing the resonance locations is given in the inset at
the right-upper corner in Fig. 3(c) for D=λm ¼ 30, where
λm ¼ 2πca=ωm. In Fig. 3(c), the loci of several complex

FIG. 3. (a) Illustration of an electrically deep subwavelength
direction-of-arrival sensor for an electromagnetic wave. (b) In the
absence of EMCL coupling, V0 ¼ 0, only the bright mode can
practically be excited, and, therefore, the excitation of the two
electric dipoles is practically identical for all θi. (c) When the
EMCL coupling is turned on, V0 ¼ 1 V, the evolution of the
complex eigenfrequencies as the spacing D varies is significant.
There are two families of eigenfrequencies corresponding to
bright and dark EMCL states. (d) As opposed to (b), here, the
electric dipole excitation highly depends on θi. (e) Similarly to
(d) for the acoustic excitation response.
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eigenfrequencies are plotted with D as a parameter whose
value is color encoded (ℑfωrg is in the log scale to emphasize
the resonance’s distinct locations). There are two families of
eigenfrequencies that correspond to a number of bright and
dark modes (see the insets). As an example, we set D ¼
28λm ≈ 9.24 mm and find low loss dark resonance at
ωc ¼ 0.928 46ωm. Remarkably, when exciting the structure
with an electromagnetic planewave at frequencies around the
dark resonance, the dark and bright resonances interplay,
giving rise to a very strong variation of the excitation
amplitudes as a function of the incidence angle θi, as shown
in Figs. 3(d) and 3(e); as opposed to Fig. 3(b), this is in the
presence of EMCL coupling. This correlation can be used to
estimate the direction of arrival.Moreover, in this electrically
small EMCL sensor scheme, a measurement of the excited
acoustic field, as opposed to of the electromagnetic field that
can be overwhelmed by the impinging wave, may increase
the detection sensitivity and noise fidelity.
Conclusions.—Here, we discussed a paradigm for piezo-

electriclike metamaterial building blocks and explored their
scattering properties based on first principles. We demon-
strated that, using these artificial materials, one can design
electrically small devices that are nevertheless highly
sensitive to the small electromagnetic-wave phase variation
along them. Utilizing this scheme, we designed an electri-
cally deep subwavelength direction-of-arrival sensor. Our
results pave the way for a plethora of exciting dynamics and
phenomena with potential technological implications in
superresolution imaging, miniaturized detectors, electri-
cally small nonreciprocal antennas, and more.
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