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Temporal cavity solitons (CS) are optical pulses that can persist in passive resonators, and they play a
key role in the generation of coherent microresonator frequency combs. In resonators made of amorphous
materials, such as fused silica, they can exhibit a spectral redshift due to stimulated Raman scattering.
Here we show that this Raman-induced self-frequency-shift imposes a fundamental limit on the duration
and bandwidth of temporal CSs. Specifically, we theoretically predict that stimulated Raman scattering
introduces a previously unidentified Hopf bifurcation that leads to destabilization of CSs at large pump-
cavity detunings, limiting the range of detunings over which they can exist. We have confirmed our
theoretical predictions by performing extensive experiments in synchronously driven fiber ring resonators,
obtaining results in excellent agreement with numerical simulations. Our results could have significant
implications for the future design of Kerr frequency comb systems based on amorphous microresonators.
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Temporal cavity solitons (CSs) are pulses of light that can
circulate indefinitely in passive driven nonlinear resonators.
They were first observed and studied in macroscopic fiber
ring cavities, and proposed as ideal candidates for bits in all-
optical buffers [1–4]. More recently, they have also been
observed in monolithic microresonators [5–8], where they
play a central role in the generation of stable, low noise, wide
bandwidth optical frequency combs [9–11].
Temporal CSs can persist without changes in their shape

or energy thanks to a delicate double balance [12]. The
material Kerr nonlinearity compensates for the solitons’
dispersive spreading, while all energy they lose is replen-
ished through interactions with the continuous wave (cw)
field driving the cavity. In addition to these fundamental
interactions, the characteristics of temporal CSs can be
influenced by “higher-order” perturbations, such as higher-
order dispersion [13,14] or avoided mode crossings [15]. In
resonators made of amorphous materials, such as silica
glass, an effect of particular significance is stimulated
Raman scattering (SRS), which causes temporal CSs to
be spectrally redshifted relative to the driving wavelength
[8,16–18]. Signatures of such CS self-frequency shift were
first observed in the context of frequency comb generation
in silicon nitride microresonators [17], and subsequently in
experiments using silica wedge resonators [7] and silica
microspheres [8]. Indirect time domain signatures have also
been reported in macroscopic fiber ring resonators [19].
In addition to shifting the CS center frequency, SRS can

also impact on the range of CS existence. Indeed, in a
pioneering theoretical work [16], Milián et al. observed
that, in the presence of SRS, temporal CSs may not exist
over the entire range of parameters where they are expected

to do so in the absence of SRS. Yet, the precise fashion in
which SRS affects the existence and stability of CSs has not
to date been thoroughly investigated, and to the best of our
knowledge, no experimental studies have been reported
that would demonstrate the impact of SRS on CS existence.
In this Letter, we theoretically and experimentally dem-

onstrate that SRS can significantly restrict the range of CS
existence. In particular, we show that, due to SRS, CSs
undergo a previously unidentified Hopf bifurcation at large
cavity detunings, leading to instability dynamics that limit
the range of parameters over which they can stably exist. We
show that this new instability sets a fundamental limit for the
minimum duration that a CS can possess for given resonator
parameters, thereby setting an upper limit for the frequency
comb bandwidth that can be achieved. We have confirmed
our theoretical predictions by performing extensive experi-
ments in three different fiber ring resonators.
We begin by theoretically analyzing the impact of SRS

on the existence and stability of temporal CSs. To this end,
we analyze the generalized mean-field Lugiato-Lefever
equation (LLE) [20–22] that includes the delayed Raman
nonlinearity [8,16,17]. We write the equation in dimension-
less form, assuming anomalous group-velocity dispersion
(for normalization, see Supplemental Material [23]):

∂Eðt; τÞ
∂t ¼

�
−1 − iΔþ i

∂2

∂τ2
�
Eþ S

þ i½ð1 − fRÞjEj2 þ fR½Γðτ; τsÞ ⊗ jEj2��E: ð1Þ

Here, the variable t describes the slow evolution of the
intracavity field Eðt; τÞ at the scale of the cavity photon
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lifetime, while τ is a fast time variable defined in a comoving
reference frame that describes the field’s temporal profile
over a single round trip. The terms on the right-hand side of
Eq. (1) describe, respectively, cavity losses, cavity phase
detuning, group-velocity dispersion, external driving,
instantaneous Kerr nonlinearity, and the delayed Raman
nonlinearity, with ⊗ denoting convolution. The Raman
response of the resonator is described by the Raman fraction
fR as well as the normalized response function Γðτ; τsÞ,
which is related to the usual time-domain Raman response
function hRðτÞ [24] through Γðτ; τsÞ ¼ τshRðττsÞ, where the
normalization time scale τs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβ2jL=ð2αÞ
p

, with β2 < 0

the resonator’s group-velocity dispersion coefficient, L the
resonator round trip length, and α half the fraction of power
lost per round trip (the cavity finesse F ¼ π=α). In the
calculations that follow, we will assume a silica glass
resonator for which fR ≈ 0.18 and the form of the response
function is well known [24,25].
In the absence of SRS (fR ¼ 0), the dynamics and

solutions of Eq. (1) are governed by the cavity detuning Δ
and driving strength S [26]. SRS introduces, however, an
additional dependency on the normalization time scale τs.
This can be understood by recalling that the impact of SRS
depends on the physical durations (and bandwidths) of the
intracavity field features, with shorter CSs (associated with
smaller values of τs) more strongly affected.
To illustrate how SRS affects the stability and existence

of CSs, we show in Fig. 1(a) the steady-state CS solutions
of Eq. (1) for a constant driving power X ¼ jSj2 ¼ 130 in
the presence (fR ¼ 0.18, red curve) and absence (fR ¼ 0,
blue curve) of SRS. Also shown are temporal [Fig. 1(b)]
and spectral [Fig. 1(c)] profiles for a CS at a typical

detuning Δ ¼ 62. The solutions were obtained by finding
the time-localized solutions of Eq. (1) using a continuation
scheme based on the Newton-Raphson method [21]; a
normalization time scale τs ¼ 1.9 ps (corresponding to one
of the experiments that will follow) was used for calculations
when including SRS. We also show in Fig. 1(a) the steady-
state cw solutions (black curves) of Eq. (1). The cw solutions
exhibit pronounced bistability, with the middle branch being
unconditionally unstable (dashed black curve).
For small detunings, SRS does not significantly perturb

the CS solutions: in both cases (with and without SRS),
the solutions exist for detunings above the up-switching
point Δ↑, exhibit well-known unstable behaviors for small
detunings (dashed blue and red curves) [27–30], and
become stable through an inverse Hopf bifurcation (ΔH1)
as the detuning increases. However, as Δ increases further,
we see a distinct deviation between the solutions obtained
in the presence and absence of SRS. This can be understood
by noting that the duration of a CS scales inversely withffiffiffiffi
Δ

p
[21]: for large detunings the CSs are temporally

narrower, and hence spectrally broader, resulting in
stronger overlap with the Raman gain spectrum.
In the presence of SRS, CSs exhibit lower peak powers,

longer durations, and their center frequency is downshifted
[cf. Figs. 1(b) and 1(c)]. But in addition to perturbing
their characteristics, it is evident from Fig. 1(a) that SRS
also impacts on their range of stability and existence. In
particular, we find that, in the presence of SRS, CSs can
undergo a second Hopf bifurcation at large detunings
[denoted asΔH2 in Fig. 1(a)], leading to unstable dynamics.
We suspect this instability arises physically because the
solitons’ decreasing temporal duration gives rise to a more
pronounced frequency downshift from the driving fre-
quency. Such a frequency shift can be envisaged to perturb
the solitons’ energy balance, and eventually cause them to
wholly lose their entrainment to the driving field.
Dynamical (split-step) simulations of Eq. (1) reveal that

the previously unidentified, large-Δ unstable CSs, exhibit
behaviors qualitatively similar to those observed for unsta-
ble CSs below the first Hopf bifurcation point ΔH1 [28,29]:
for detunings slightly above ΔH2, the CSs exhibit oscil-
latory behavior, but as Δ increases further, they experience
an abrupt collapse to the cw state (see Supplemental
Material [23]). The simulations further show that, in the
region where persistently oscillating CSs exist, the period
and depth of the oscillations depend nontrivially on the
parameters Δ and X (see Supplemental Material [23]).
Furthermore, all the persistent oscillations we have found
so far are associated with a single frequency; no period-
doubling or chaotic behaviors have been found.
The results in Fig. 1(a) also show that, in the presence of

SRS, the CS solutions cease to exist altogether at a detuning
significantly smaller [Δmax in Fig. 1(a)] than the theoretical
limit of π2X=8 observed in the absence of SRS [31]. We
emphasize, however, that Δmax only represents a theoretical

FIG. 1. (a) Peak amplitude of the intracavity field, jEjmax, as a
function of cavity detuning Δ for X ¼ 130. Black curves
represent cw solutions, while red and blue curves show CS
solutions with and without SRS, respectively. The dashed curves
correspond to unstable solutions. (b) Temporal and (c) spectral
CS profiles for Δ ¼ 62. The colors match those used in (a). The
corresponding solutions are marked with crosses in (a). The green
and red shaded areas in (a) indicate regions of monostability and
bistability of the cw solutions, respectively.
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upper limit of CS existence: in practice CSs cannot be
sustained for detunings far above ΔH2 because of the nature
of the instability dynamics (see Supplemental Material
[23]). At this point, we also emphasize that the large-Δ
instability regime uncovered in Fig. 1(a) was not discussed
in Ref. [16]. In fact, we have carefully verified that the
parameters used in Ref. [16] are such that the second Hopf
bifurcation does not manifest itself. The CS instabilities
studied in Ref. [16] are rather those occurring for detunings
below the first Hopf bifurcation point ΔH1.
The precise detunings ΔH2 and Δmax depend on the

normalization time scale τs and the driving power X. To
gain more insight, we evaluated the CS branches as a
function of Δ [as in Fig. 1(a)] for a wide range of τs and X,
and extracted ΔH2 and Δmax for each set of parameters.
Figure 2(a) summarizes our findings. Here we show ΔH2
(blue curves) and Δmax (red curves) as a function of X
for five different values of τs. The parameter boundaries,
between which CSs can exist in the absence of SRS [28],
are also displayed (black curves).
For small driving powers X (and/or large normalization

time scales τs), we observe no secondary Hopf bifurcation
and the upper limit of CS existence follows closely the
expected value of π2X=8. However, for larger driving

powers (and/or shorter normalization time scales τs), we
see the appearance of the second Hopf bifurcation at large
Δ, and we find that the upper limit of CS existence is
significantly reduced from the Raman-free values.
Surprisingly, while that upper limit Δmax monotonically
increases with the driving power X, the upper limit of CS
stability (determined byΔH2) does not. Instead, we find that
immediately after the first appearance of the second Hopf,
the bifurcation point ΔH2 exhibits a small decline with
increasing X, but eventually saturates to an almost constant
value ΔH2S ¼ lim

X≫1
ΔH2 that depends only on the normali-

zation time scale τs.
The results in Fig. 2(a) suggest that, because of SRS,

there exists a maximum detuning ΔH2S above which CSs
can no longer remain stable in a given resonator, regardless
of the driving power. Furthermore, due to the nature of the
instability dynamics, this detuning also approximates well
the upper limit of practical CS existence. As alluded to in
Fig. 2(a),ΔH2S depends almost exclusively on the resonator
parameters through the normalization time scale τs, and in
Fig. 2(b), we plot ΔH2 as a function of τs. As can be seen,
the dependence is quasilinear, and only becomes nonlinear
for very small τs < 0.5 ps.
The observation that SRS imposes an upper limit for

CS detunings also implies a lower limit for their temporal
durations. Indeed, the duration of a temporal CS is
approximately given by τ0 ¼ τs=

ffiffiffiffi
Δ

p
[1,5,21]. Thus, in

the presence of SRS, the minimum duration that a (stable)
CS can possess is τmin ≈ τs=

ffiffiffiffiffiffiffiffiffiffi
ΔH2S

p
. For τs > 0.5 ps we can

approximate [cf. Fig. 2(b)]

τmin ¼
τsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aτs þ b
p ; ð2Þ

where a ¼ 27.3 ps−1 and b ¼ 20.4 are extracted from the
linear fit shown in Fig. 2(b). This simple linear approxi-
mation can be used to estimate the minimum (maximum)
CS duration (bandwidth) achievable in silica resonators.
(For other amorphous resonators, the coefficients a and b
will likely be different.) We have carefully verified that this
result is consistent with prior experimental reports of CSs in
various silica resonators [2,7,8,13].
To test our theoretical predictions, we have performed

experiments using synchronously driven macroscopic fiber
ring resonators, with an overall setup similar to the one
used in [19]. Three different resonators were used so as to
examine the effect of different normalization time scales τs.
The resonators are all made up of single-mode optical fiber
laid in a ring configuration and closed on themselves by a
95/5 coupler. Each of them also incorporates a 99/1 tap
coupler through which the intracavity dynamics can be
monitored in real time.
Because the resonators contain no other elements, they

display very high finesse F . This allows us to reach high
values of normalized driving power X ∝ F 3, as required

FIG. 2. (a) Cavity detunings ΔH2 and Δmax, where the CS
solution loses its stability (blue markers) and ceases to exist (red
markers), respectively, as a function of driving power X and for
a variety of τs. The squares correspond to simulated points,
while the solid curves are a guide to the eye. Black curves
indicate limits of CS existence in the absence of SRS. (b)
Saturated limit detuning ΔH2S ¼ lim

X≫1
ΔH2 as a function of the

normalization time scale τs. Dashed red curve shows a linear fit.
The three values of τs realized in our experiments are high-
lighted at the bottom of (b).
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for the study of SRS-induced limits of CS existence [see
Fig. 2(a)]. To study the effect of the normalization time
scale τs, our three different cavities have different round trip
lengths of L1 ¼ 13 m, L2 ¼ 25 m, and L3 ¼ 50 m and
finesses F 1 ¼ 77, F 2 ¼ 77, and F 3 ¼ 69; the correspond-
ing normalization time scales are τS1¼1.9 ps, τS2 ¼ 2.6 ps,
and τS3 ¼ 3.7 ps, respectively.
We drive our cavities with flattop nanosecond pulses

whose repetition rate is synchronized to the respective
cavity round trip time [19,32,33]. These pump pulses have
a duration of 1.2 ns, and they are generated by modulating
the output of a narrow linewidth cw laser with a 12 GHz
intensity modulator. Before the pulses are injected into
the cavity, they are amplified using an Erbium-doped fiber
amplifier, and spectrally filtered to remove amplified
spontaneous emission. Together with the high cavity
finesse, this pumping method allows us to achieve high
normalized driving powers up to X ≈ 200.
To experimentally study the limits of CS existence, we

linearly tune the cw laser frequency so as to continuously
scan the cavity detuning across individual resonances. By
simultaneously measuring the cavity output (extracted by
the 1% tap coupler) with a fast 12.5 GHz photodetector, we
can monitor the intracavity dynamics in real time. This
allows us to observe the creation and annihilation of CSs as
the detuning is scanned [34], and from the acquired data,
we can extract their limits of existence.
Figure 3(a) shows an example of the measured intracavity

dynamics as the cavity detuningΔ is linearly scanned from 0
to 110 (corresponding to 6.3 × 10−4 rad=roundtrip) at a
constant driving power X ¼ 130 (∼11.3 W peak power).
For low detunings the field corresponds to an extended
modulation instability pattern which is visible in Fig. 3(a) as
a solid bright band [35]. Out of this chaotic signal, CSs
emerge as the detuning increases above Δ ≈ 30. The CSs
exhibit curved trajectories as the detuning increases, which is
a known effect of SRS [19]. When the detuning reaches
Δlim ≈ 101, all the CSs disappear almost simultaneously.
(Small discrepancies are attributed to inhomogeneities in
the pump pulse profile.) Accordingly, this corresponds to the
limit detuning beyond which solitons can no longer be
sustained. The observed value is significantly smaller than
the theoretical limit π2X=8 ≈ 160 expected without SRS.
To more comprehensively test our theoretical predic-

tions, we have repeated the above experiment for a wide
range of driving powers X and using all three of our
resonators to sample different normalization time scales τs.
For each experiment, we perform a detuning scan [as in
Fig. 3(a)], and extract the limit detuning beyond which CSs
no longer exist. Our experimental findings are summarized
in Fig. 3(b). Here the circle markers correspond to
experimental data acquired for the different cavities, while
the dashed curves show results from numerical simulations
of the LLE (the simulations use experimental parameters).
We estimate the error in our measured limit detunings to be

about �5, arising predominantly from inhomogeneities in
the pump pulse profile and imprecision in extracting the
zero-detuning reference. As can be seen, our numerical
simulations are in excellent agreement with experimental
findings. Furthermore, in agreement with our theoretical
predictions [see Fig. 2(a)], the limit detuning Δlim initially
increases withX, but eventually saturates to a constant value.
This saturation occurs in all of our resonators but results in
different saturated limit detunings due to the different
normalization time scales τs. Overall, these measurements
confirm our main hypotheses: SRS limits the range of CS
existence, and gives rise to a maximum detuning beyond
which CSs cannot exist in a given resonator.
The experimental results in Fig. 3(b) are in excellent

qualitative agreement with the theoretical findings in Fig. 2.
However, careful analysis shows that our experiments
consistently overestimate the upper limit of CSs existence
compared to the theoretically predicted second Hopf
bifurcation point ΔH2. This discrepancy arises predomi-
nantly because the detuning is continuously increasing in
our experiments. Indeed, the CSs persist briefly even after
passing the second Hopf bifurcation point ΔH2, and so a

FIG. 3. (a) Intracavity dynamics as the detuning is scanned
from 0 to 110 (top x axis) during about 7000 round trips (bottom
x axis) with X ≈ 130. The cavity is 13 m long and has a
normalization time scale τS1 ¼ 1.9 ps. Dashed black and white
vertical lines indicate zero detuning and the limit detuning Δlim at
which CSs cease to exist, respectively. (b) Limit detuning Δlim at
which CSs cease to exist as a function of driving power X and for
three different normalization time scales τs. The circle markers
are extracted from experiments, while the dashed curves corre-
spond to results from numerical simulations of the LLE. The solid
black line shows the theoretical CS existence limit in the absence
of SRS, i.e., Δmax ¼ π2X=8.
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continuously increasing detuning naturally leads to over-
estimation of their existence range. We have confirmed this
hypothesis by performing additional experiments where the
detuning is initially scanned and then stopped at different
points close to the CS existence limit. Results are sum-
marized in the Supplemental Material [23]: they demon-
strate that the second Hopf bifurcation point ΔH2
reasonably approximates the practical upper limit of CS
existence.
In conclusion, we have shown that, due to SRS, temporal

CSs can lose their stability through a previously uniden-
tified Hopf bifurcation that occurs for large detunings.
Furthermore, we have shown that this instability gives rise
to a maximum detuning above which stable CSs cannot
exist in a given resonator, regardless of the driving power.
We have confirmed our theoretical analysis through com-
prehensive experiments in three different fiber ring reso-
nators. In addition to unveiling a new type of CS instability,
our results could impact the design of frequency comb
generators based on microresonators where SRS plays a
role, such as silica microspheres [8], wedge resonators [36],
and fiber-based Fabry-Perot resonators [37].
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