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We introduce a novel formalism in which the paraxial coupled wave equations of the nonlinear optical
sum-frequency generation process are shown to be equivalent to the Pauli equation describing the dynamics
of a spin-1=2 particle in a spatially varying magnetic field. This interpretation gives rise to a new classical
state of paraxial light, described by a mutual beam comprising of two frequencies. As a straightforward
application, we propose the existence of an all-optical Stern-Gerlach effect, where an idler beam is
deflected by a gradient in the nonlinear coupling, into two mutual beams of the idler and signal waves
(equivalent to oppositely oriented spinors), propagating in two discrete directions. The Stern-Gerlach
deflection angle and the intensity pattern in the far field are then obtained analytically, in terms of the
parameters of the original optical system, laying the grounds for future experimental realizations.
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The Stern-Gerlach (SG) experiment [1–3] is one of the
cornerstones of quantum mechanics (QM), providing
evidence for the quantum nature of the spin angular
momentum. Modern research has given rise to a variety
of experimental realizations and proposals of physical
systems which exhibit effects analogous to the SG effect
[4–7]. Some of these analogies have also emerged in the
field of optics: optical fields in a resonant atomic gas have
been demonstrated to deflect under the action of an external
inhomogeneous magnetic field [8–10]. These analogies,
apart from being aesthetically pleasing, may contribute to
the fundamental understanding of such physical systems, as
well as lead to novel applications.
In the present Letter, we propose the existence of an all-

optical SG effect.We demonstrate how the paraxial coupled-
wave equations (CWEs) of the sum-frequency generation
(SFG) process in nonlinear χð2Þ materials is analogous to the
transverse Pauli equation, describing the motion of a non-
relativistic spin-1=2 particle in a transverse magnetic field.
We show that the nonlinear coupling and the phase-
mismatch parameter constitute an effective magnetic field,
interacting with a mutual beam comprising a superpoistion
of the idler and signal frequencies, the equivalent of a spinor.
Consequently, it is shown that a gradient in the nonlinear
coupling deflects opposite mutual beams into two discrete
angles. The control of light by light in nonlinear χð2Þ media
and its applications have been thoroughly established in the
past few decades [11]. Alongwith the relatively new interest
in the generation of photonic two-frequency superposition
states as qubits [12,13], the all-optical SG effect might serve
as a new platform for suchmanipulations of light, both in the
classical and the quantum domains.

In the original SG experiment [1], a beam of silver
atoms, each carrying a net spin-1=2, is incident upon a
region in space with a spatially varying magnetic field. We
denote the propagation direction as ẑ, and the transverse
directions as x̂ and ŷ, as illustrated in Fig. 1(a). The beam
deflection due to the magnetic field gradient is later
observed on a screen. Only two discrete deflection angles
are observed, indicating that each of the spin components
always has only two available values, �ℏ=2.
We shall now present the formalism reproducing the

famous SG results in an analogous, classical nonlinear
optical system. It is known that the linear paraxial
Helmholtz equation is equivalent to the Schrödinger
equation [14–16]. Furthermore, the equivalence between

(a) (b)

FIG. 1. (a) Setup of the original SG experiment. A beam of
spin-1=2 silver atoms is deflected into two discrete directions due
to a magnetic field gradient. (b) Setup of the all-optical SG
experiment. An idler beam is incident on a pumped nonlinear χð2Þ
crystal, and is deflected into two mutual beams, each composed
of a superposition of the idler and signal waves. This deflection
into two discrete directions occurs due to a transverse gradient in
the nonlinear coupling.
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the SFG CWEs and two-level systems has been pointed
out, giving rise to the realization of robust, broadband, and
efficient adiabatic frequency conversion [17–20]. Here we
utilize these analogies one step further and introduce a new
state of classical light, analogous to a spin-1=2 particle, and
study its dynamics in the equivalent of a spatially varying
magnetic field.
The time-independent, paraxial CWEs for SFG under the

approximations of slowly varying envelope and undepleted
pump field are given by [21]

∇2
TAi þ 2iki

∂Ai

∂z ¼ −
4dω2

i

c2
A�
pAse−iΔkz; ð1Þ
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TAs þ 2iks

∂As

∂z ¼ −
4dω2

s

c2
ApAieiΔkz; ð2Þ

where AjðrÞ with j ¼ i, p, s (for idler, pump, and signal,
respectively) are the slowly varying envelopes of the
interacting waves, kj ≃ kz;j and ωj are the wave numbers
and frequencies, respectively, where we set ωs ¼ ωi þ ωp,
d is the corresponding component of the nonlinear sus-
ceptibility tensor, c the speed of light, and Δk ¼ kp þ ki −
ks is the phase mismatch parameter. The nonlinear
susceptibility is often modulated, a process known as
quasi-phase-matching (QPM) [21,22]. In such a case, we
can write the nonlinear coefficient as a Fourier series,
dðzÞ ¼ P

qdqe
iqz, and by substituting into Eqs. (1) and (2),

we keep in the rhs only the terms which oscillate
closest to phase matching, similarly to the rotating wave
approximation. Furthermore, we make a transformation
to a rotating frame given by Ai ¼

ffiffiffiffiffi
ks

p
ωie−iðΔk−qÞz=2 ~Ai and

As¼
ffiffiffiffi
ki

p
ωseiðΔk−qÞz=2 ~As, denote Ap¼jApjeiϕp and dq ¼

jdqjeiϕd , and introduce dimensionless spatial coordi-
nates ð~x; ~y; τÞ ¼ ffiffiffiffiffiffiffiffi

kiks
p ðx; y; zÞ.

Our goal is to demonstrate the similarity between the
nonlinear coupled wave equations and the dynamics
of a massive spin-1=2 particle in a magnetic field. We
therefore define the square root of the ratios between the
signal and idler wave vectors as spin-dependent masses,
given by m↑ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ki=ks

p
and m↓¼

ffiffiffiffiffiffiffiffiffiffiffi
ks=ki

p
, write m ≡

2ðm−1
↑ þ m−1

↓ Þ−1 ¼ 2
ffiffiffiffiffiffiffiffi
kiks

p
=ðki þ ksÞ as the equivalent

of twice the reduced mass, and define ϵ¼ðm↓−m↑Þ=
ðm↓þm↑Þ¼ðks−kiÞ=ðksþkiÞ as the equivalent mass
contrast parameter. m↑, m↓ are the mass eigenvalues of
the mass operator M. Its inverse is given by M−1 ¼
1=mð1þ ϵσzÞ, where 1 stands for the identity operator
and σz is the third Pauli matrix. We can now use these
definitions to rewrite the CWEs as a single matrix equation,

i
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where σ ¼ ðσx; σy; σzÞ is the Pauli matrix vector [2], and
~p2
T ¼ −∇2

T ¼ −∂2
~x − ∂2

~y. Here the optical equivalent of the
magnetic field is given by

B ¼ 2jdqApj
nins

ðx̂ cosϕþ ŷ sinϕÞ þ ẑ
Δk − q
2

ffiffiffiffiffiffiffiffi
kiks

p ; ð4Þ

where nj ¼ nðωjÞ is the frequency-dependent refractive
index of the medium, satisfying kj ¼ njωj=c for j ¼ i, s,
and ϕ ¼ ϕp − ϕd is the relative phase between the pump
envelope and the modulation of the nonlinear susceptibility
(phases are measured with respect to τ ¼ 0, where the total
phase of the pump field is assumed to vanish). As evident
from Eq. (4), the z component of this field is proportional to
the phase mismatch Δk − q; its transverse component’s
magnitude is proportional to the nonlinear coupling
strength, and the direction of this component is determined
by the phase ϕ.
A new classical state of light can be deduced from the

above formalism. A mutual beam of the idler and signal
waves in the paraxial approximation can be described as a
tensor product of the spectral amplitude of the beam with
its corresponding transverse wave front. Adopting the
state ket notation, we write this two-component state as
jψi¼ jωii⊗

R
d2 ~r ~Aið~rÞj~riþ jωsi⊗

R
d2 ~r ~Asð~rÞj~ri, where

~r ¼ ~x x̂þ~y ŷ is a transverse position vector, and j~ri is a
continuous base ket of the position representation.
Different frequency kets jωji are orthogonal in the sense
that they cannot produce an observable interference inten-
sity pattern, and they are also distinguishable by means of
spectral filtering. Explicitly, we can write hωjjωki ¼R
dω0S�jðω0ÞSkðω0Þ ¼ δjk, where Sjðω0Þ≡ hω0jωji is the

normalized [
R
dω0jSðω0Þj2 ¼ 1] spectral amplitude of the

jωji wave, at frequency ω0.
The state jψi is equivalent to a two-component spinor

representing the quantum state of a nonrelativistic spin-1=2
particle. We proceed to identify the ket states jωii and jωsi
as the equivalents of the spin-up j↑zi and spin-down j↓zi in
the z basis, respectively. Only when a transverse magnetic
field equivalent, or nonlinear coupling, is present, can the
two “spin” states interact and mix. In the latter case, if
diffraction is neglected, all the possible states of the systems
can be mapped onto a Bloch sphere, with the spin-up (idler
wave) and spin-down (signal wave) states located at the
north and south poles of the sphere, respectively. The
magnetic field then acts as a torque vector, and the system’s
state precesses around it [17,19]. For more details, see the
Supplemental Material [23].
In what follows, we shall restrict ourselves to the

following simplifying assumptions: (i) we introduce the
long-wavelength pump approximation, in which kp ≪
ks; ki such that ϵ ≪ 1; (ii) we assume a constant phase ϕ ¼
ϕ0 in all space; (iii) we assume a quasi-phase-matched
interaction, i.e., Δk ¼ q for the SFG process (other proc-
esses such as second harmonic generation are assumed to
remain mismatched, so as to not interfere with the inter-
action). In terms of Eq. (4), this alsomeans that themagnetic
field is transverse, i.e., Bz ¼ 0, such that B≡ BT ¼
BB̂Tðϕ0Þ, where Bð~rÞ ¼ 2jdqApj=nins is the spatially
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varyingmagnetic fieldmagnitude and B̂Tðϕ0Þ ¼ x̂ cosϕ0 þ
ŷ sinϕ0 is its direction [24]. The above assumptions lead to
an equation equivalent to the transverse Pauli equation,
describing the dynamics of a nonrelativistic spin-1=2
particle in a weak transverse magnetic field, in the particle
rest frame (see the Supplemental Material for details [23]),

i
∂
∂τ jψi ¼

�
~p2
T

2m
− σ ·BTð~rÞ

�
jψi: ð5Þ

A summary of our formalism is given in Table I.
A scheme for realizing an all-optical SG experiment is

shown in Fig. 1(b). The equivalent of a magnetic field
gradient in nonlinear optics may in principle be realized
either by a linearly varying pump wave front field or via a
gradient in the nonlinear coefficient. Since in our analysis
we assume a uniform, plane-wave pump field, we limit the
discussion to the latter option (effects of a wide Gaussian
pump wavefront have shown little difference in the sim-
ulations presented in the Supplemental Material [23]). An
effective gradient in the χð2Þ nonlinearity can be imple-
mented by a specific choice of patterning of the nonlinear
crystal. Altering the sign of d by using electric field poling
phase matches the interaction, whereas the duty cycle of the
poling determines the strength of the interaction [21,22,25].
We comment that 2D patterns have been utilized in the past
in order to spatially shape and deflect frequency-converted
beams [25–29].
The magnitude of the Fourier coefficient of first-

order QPM with periodically modulated nonlinearity
is given by [21] dq ¼ ð2=πÞd sin½πDð~yÞ�, where Dð~yÞ is
the transversely varying duty cycle. A choice of Dð~yÞ ¼
arcsin½ð~yþ ~Ly=2Þ= ~Ly�=π, where ~Ly is the transverse width
of the crystal (− ~Ly=2 ≤ ~y ≤ ~Ly=2), yields a magnetic field
equivalent of

BT ¼ B̂Tðϕ0Þ
�
1

2
B0 þ B0 ~y

�
; ð6Þ

where B0 ¼ 2deff jApj=nins, with deff ¼ 2d=π and where
B0 ¼ B0= ~Ly is the equivalent of a magnetic field gradient.
We now turn to solve the wave equation, Eq. (5). First,

we note that a transformation from the z-component basis
of the spin to the spin basis in the direction B̂Tðϕ0Þ ¼
x̂ cosϕ0 þ ŷ sinϕ0 diagonalizes Eq. (5). This transforma-
tion is given explicitly by

jωþi¼
jωiiþeiϕ0 jωsiffiffiffi

2
p ; jω−i¼

jωii−eiϕ0 jωsiffiffiffi
2

p ; ð7Þ

and we can interpret each of these eigenstates as a mutual
beam of the idler and signal waves, in contrast to the
previously discussed spin eigenstates along the z axis,
which are characterized by only a single frequency (eitherωs
or ωi). Next, we transform the resulting diagonalized
equation to the transverse Fourier space by taking ajð ~kTÞ ¼R
d2 ~rAj expð−i ~kT · ~rÞ, where ~kT ¼ ð~kx; ~kyÞ is a dimension-

less transverse k-vector, and a general state may now
be written as jψi ¼ P

s¼ω�jsi ⊗
R
d2 ~kasð ~kTÞj ~kTi. The

resulting Hamiltonian in the diagonalized momentum rep-
resentation is H ¼ Hþjωþihωþj þH−jω−ihω−j, where
H� ¼ 1

2
~k2T ∓ iB0ð∂=∂ ~kyÞ ∓ 1

2
B0. The general solution

to the wave equation is given in terms of the propagation
operators in the momentum representation, U�ðτÞ ¼R
d2 ~k exp ð−iτH�Þj ~kTih ~kT j. Employing the Zassenhaus

formula [30], these propagation operators are found to be

exp ð−iτH�Þ ¼ exp
�
�iτ

B0

2
− i

τ3B02

6

�

× exp

�
∓ τB0 ∂

∂ ~ky
�

× exp

�
−iτ

1

2
~k2T ∓ 1

2
iτ2B0 ~ky

�
: ð8Þ

The structure of the propagation operator implies that each
of the eigenstates [the mutual beams of Eq. (7)] accelerates
in the �y directions, with acceleration B0 [31]. This is the
manifestation of the Stern-Gerlach dynamics in the equiv-
alent nonlinear optics system, as illustrated in Fig. 2.
We now investigate how a Gaussian beam in the

idler frequency is affected by the SG Hamiltonian.
This beam is equivalent to a free “particle” with a spin-
up in the z direction. Note that the initial beam in the idler
frequency is merely the sum of the two mutual beams,
Eq. (7), as the wave in the signal frequency is absent.
Therefore, at τ ¼ 0 we write the state ket as
jψð0Þi¼ ð1= ffiffiffi

2
p Þðjωþiþjω−iÞ⊗

R
d2 ~kaið ~kTÞj ~kTi, where

aið ~kTÞ ¼ A0 exp ð−~k2T=2Δ~k2Þ=
ffiffiffiffiffiffiffiffiffiffiffi
πΔk2

p
, and the state at any

time τ will be given by jψðτÞi ¼ ½exp ð−iτHþÞjωþihωþjþ
exp ð−iτH−Þjω−ihω−j�jψð0Þi. The action of each propa-
gator on the Gaussian envelope deflects the mutual beams
into two discrete directions. The Fourier space intensity of
each of the spin states in terms of dimensional parameters,
just outside the crystal, is therefore given by

TABLE I. Summary of the physical parameters of the spin-1=2
dynamics and the equivalent system in nonlinear optics.

Parameter Spin-1=2 SFG equivalent

Spin (z basis) j↑zi, j↓zi jωii, jωsi
Wave functions ψ↑, ψ↓

~Ai, ~As

Magnetic field B ð2jdqApj=ninsÞB̂TðϕÞ
þðΔk − qÞ=2 ffiffiffiffiffiffiffiffi

kiks
p

ẑ

Space and time ðx; y; tÞ ð~x; ~y; τÞ ¼ ffiffiffiffiffiffiffiffi
kiks

p ðx; y; zÞ
Mass m m↑ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ki=ks
p ¼ m−1

↓

Magnetic moment μ ¼ eℏ=2m μ ¼ 1

Transverse spin ðj↑zi � eiϕj↓ziÞ=
ffiffiffi
2

p jω�i ¼
ðjωii � eiϕjωsiÞ=

ffiffiffi
2

p
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jhk0;�jψij2 ¼ jA0j2
2πΔk2

exp

�
−
k20;xþðk0;y ∓ θk0;zÞ2

Δk20

�
; ð9Þ

where k0 ¼ ðk0x; k0y; k0zÞ is the free-space wave vector.
The deflection angle, θ, is given by

θ ¼ niτB0 ¼
ffiffiffiffiffi
Ip
I0

s
Lz

Ly
; ð10Þ

where we have used B0 ¼ 2jApjdeff=n3i k0Ly, and where the
reference intensity is defined as I0 ¼ 1

2
npn2i ϵ0cd

−2
eff . The

deflection angle is the product of the time of flight of
the “particle” and the magnetic field gradient, and is
therefore proportional to the crystal length and inversely
proportional to the crystal width. A surprising result is that
there is not any on-axis light—either at the original idler
frequency or at the signal frequency—despite the fact that
the up-conversion process is collinearly phase matched. It
is also interesting to note that the deflection angle is all-
optically controlled by the pump intensity, and increases
as the interaction length becomes larger. Substituting
typical values for LiNbO3, deff ¼ 17.2 × 10−12 m=V,
λi ¼ 500 nm, λp ¼ 3500 nm, np ¼ 2.14, and ni ¼ 2.34,
we find I0 ≃ 5.26 × 1015 W=cm2. Choosing crystal dimen-
sions Ly ¼ 1 mm and Lz ¼ 2.3 cm, and for a pulsed pump
of peak intensity ∼10 MW=cm2, we find θ≃ 1 mrad.
At a distance R from the nonlinear crystal, this deflection

produces a far-field intensity distribution of

IðrÞ ∝ 1

λ20R
2

X
s¼ω�

jhk0; sjψij2
�
k0r
R

�
; ð11Þ

where r ¼ x̂xþ ŷy is the position on the screen, and
jhk0; sjψij2 is given in Eq. (9). The inset in Fig. 2 illustrates

the intensity pattern in the far field. This intensity pattern
has two distinct lobes, as in the SG experiment. We
emphasize that each of the spots on the screen contains
a similar contribution from both the idler and signal waves,
having a phase difference of ϕ0 (for the jωþi state) or
ϕ0 þ π (for the jω−i state). A numerical simulation
corresponding to our analytic derivations is presented in
the Supplemental Material [23].
In summary, we have introduced a novel formalism in

which a mutual beam of light undergoing a nonlinear
interaction is equivalent to a spin-1=2 particle in a spatially
varying magnetic field. We presented the possibility of an
all-optical Stern-Gerlach effect, where an idler beam is
deflected by a gradient in the nonlinear coupling, into two
mutual beams propagating in two discrete directions. Our
formalism may certainly lead to other interesting analogies
to physical effects of spin-1=2 dynamics. For example,
an adiabatic Berry phase can be realized in nonlinear optics
[32], where the mutual beam is expected to accumulate a π
phase shift upon a 2π rotation of the state, as do spin-1=2
particles and polarized photons following a rotation over a
great circle on the Bloch and Poincaré spheres, respectively
[2,33–35].
A further outlook into quantum effects can occur when

the input idler wave is a single photon state. In this case, the
result will be a single-photon 2-qubit state in both fre-
quency, i.e., either the signal or the idler frequencies, as
well as in direction, in one of the two output angles. This
observation might be of importance for generating, and
spatially separating, orthogonal frequency superposition
states for the realization of bichromatic qubits [12,13].
A Stern-Gerlach deflector for single photons may, there-
fore, play an important role in the realization of quantum
information applications based on photonic qubits in the
frequency basis.
The all-optical SG effect may also provide a platform for

investigating just how far can the limits of analogies
between classical and quantum-mechanical systems be
stretched. For example, controversial concepts such as
classical or single-particle “entanglement” [36–38] can
be put to experimental investigation. This may cast light
on the quantum mechanical phenomena and the mecha-
nisms that suppress them in the classical description of the
macroscopic world.

This work was supported by the Israel Science
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