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We show that a simple modification of the surface code can exhibit an enormous gain in the error
correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors.
Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of
pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi,
Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for
example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of
the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely
requires measuring products of Y instead of Z around the faces, as this doubles the number of useful
syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains
can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality
constraints of topological codes.
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For quantum computing to be possible, fragile quantum
information must be protected from errors by encoding it in
a suitable quantum error correcting code. The surface code
[1] (and related topological stabilizer codes [2]) are quite
remarkable among the diverse range of quantum error
correcting codes in their ability to protect quantum infor-
mation against local noise. Topological codes can have
surprisingly large error thresholds—the break-even error
rate below which errors can be corrected with arbitrarily
high probability—despite using stabilizers that act on
only a small number of neighboring qubits [3]. It is the
combination of these high error thresholds and local
stabilizers that make topological codes, and the surface
code in particular, popular choices for many quantum
computing architectures.
Here we demonstrate a significant increase in the error

threshold for a surface code when the noise is biased,
i.e., when one Pauli error occurs at a higher rate than
others. For qubits defined by nondegenerate energy levels
with a Hamiltonian proportional to Z, the noise model is
typically described by a dephasing (Z-error) rate that is
much greater than the rates for relaxation and other energy-
nonpreserving errors. Such biased noise is common in
many quantum architectures, including superconducting
qubits [4], quantum dots [5], and trapped ions [6], among
others. The increased error threshold is achieved by
tailoring the standard surface code stabilizers to the noise
in an extremely simple way and by employing a decoder
that accounts for correlations in the error syndrome. In
particular, using the tensor network decoder of Bravyi,
Suchara, and Vargo (BSV) [7], we give evidence that the
error correction threshold of this tailored surface code with

pure Z noise is pc ¼ 43.7ð1Þ%, a fourfold increase over
the optimal surface code threshold for pure Z noise of
10.9% [7].
These gains result from the following simple observa-

tions. For a Z error in the standard formulation of the
surface code, the stabilizers consisting of products of Z
around each plaquette of the square lattice contribute no
useful syndrome information. Exchanging these Z-type
stabilizers with products of Y around each plaquette still
results in a valid quantum surface code, since these Y-type
stabilizers will commute with the original X-type stabiliz-
ers. But now there are twice as many bits of syndrome
information about the Z errors. Taking advantage of these
extra syndrome bits requires an optimized decoder that
can use the correlations between the two syndrome types.
The standard decoder based on minimum-weight matching
breaks down at this point, but the BSV decoder is
specifically designed to handle such correlations. We show
that the parameter χ, which defines the scale of correlation
in the BSV decoder, needs to be large to achieve optimal
decoding, so in that sense accounting for these correlations
is actually necessary. These two ideas—doubling the
number of useful syndrome bits, and a decoder that makes
optimal use of them—give an intuition that captures the
essential reason for the increased threshold. It is nonethe-
less remarkable just how large an effect this simple
change makes.
We also consider more general Pauli error models, where

Z errors occur more frequently than X and Y errors with a
nonzero bias ratio of the error rates. We show that the
tailored surface code exhibits these significant gains in the
error threshold even for modest error biases in physically
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relevant regimes: for biases of 10 (meaning dephasing
errors occur 10 times more frequently than all other errors),
the error threshold is already 28.2(2)%. Figure 1 presents
our main result of the threshold scaling as a function of
bias. Notably, we find that the tailored surface code
together with the BSV decoder performs near the hashing
bound for all values of the bias.
Error correction with the surface code.—The surface

code [1] is defined by a 2D square lattice having qubits on
the edges with a set of local stabilizer generators. In the
usual prescription, for each vertex (or plaquette), the
stabilizer consists of the product of the X (or Z) operators
acting on the neighboring edges. We simply exchange the
roles of Z and Y, as shown in Fig. 2. By choosing
appropriate “rough” and “smooth” boundary conditions
along the vertical and horizontal edges, the code space
encodes one logical qubit into the jointþ1 eigenspace of all
the commuting stabilizers with a code distance d given by
the linear size of the lattice.
A large effort has been devoted to understanding error

correction of the surface code and the closely related toric

code [8]. The majority of this effort has focused on the
cases of either pure Z noise, or depolarizing noise where X,
Y, and Z errors happen with equal probability; see
Refs. [2,9] for recent literature reviews. Once a noise
model is fixed, one must define a decoder, and the most
popular choice is based on minimum-weight matching
(MWM). This decoder treats X and Z noise independently,
and it has an error threshold of around 10.3% for pure Z
noise with a naive implementation [3,10], or 10.6% with
some further optimization [11]. Many other decoders have
been proposed, however, and these are judged according to
their various strengths and weaknesses, including the
threshold error rate, the logical failure rate below threshold,
robustness to measurement errors (fault tolerance), speed,
and parallelizability. Of particular note are the decoders of
Refs. [12–20], since these either can handle, or can be
modified to handle, correlations beyond the paradigm of
independent X and Z errors.
The BSV decoder.—Our choice of the BSV decoder [7] is

motivated by the fact that it gives an efficient approxima-
tion to the optimal maximum likelihood (ML) decoder,
which maximizes the a posteriori probability of a given
logical error conditioned on an observed syndrome. This
decoder has also previously been used to do nearly optimal
decoding of depolarizing noise [7], achieving an error
threshold close to estimates from statistical physics argu-
ments that the threshold should be 18.9% [21]. [In fact, our
own estimate of the depolarizing threshold using the BSV
decoder is 18.7(1)%.] Because it approximates the ML
decoder, the BSV decoder is a natural choice for finding the
maximum value of the threshold for biased noise models.
The decoder works by defining a tensor network with

local tensors associated with the qubits and stabilizers of
the code. The geometry of the tensor network respects the
geometry of the code. Each index on the local tensors has
dimension 2 initially, but during the contraction sequence,
this dimension grows until it is bounded by χ, called the
bond dimension. When χ is exponentially large in n, the
number of physical qubits, then the contraction value of
the tensor network returns the exact probabilities condi-
tioned on the syndrome of each of the four logical error
classes. Such an implementation would be highly ineffi-
cient, but using a truncation procedure during the tensor
contraction allows one to work with any fixed value of
χ ≥ 2 with a polynomial runtime of Oðnχ3Þ. In this way,
the algorithm provides an efficient and tunable approxi-
mation of the exact ML decoder, and in practice small
values of χ were observed to work well [7]. We refer the
reader to Ref. [7] for the full details of this decoder.
Biased Pauli error model.—A Pauli error channel is

defined by an array p ¼ ð1 − p; px; py; pzÞ, corresponding
to the probabilities for each Pauli operator I (no error), X,
Y, and Z, respectively. We define p ¼ px þ py þ pz to be
the probability of any single-qubit error, and we always
consider the case of independent, identically distributed

FIG. 1. Threshold error rate pc as a function of bias η. The dark
gray line is the zero-rate hashing bound for the associated Pauli
error channel. Lighter gray lines show the hashing bound for rates
R ¼ 0.001 and 0.01 for comparison; the surface code family has
rate 1=n for n qubits. Blue points show the estimates for the
threshold using the fitting procedure described in the main text
together with 1-standard-deviation error bars. The point at the
largest bias value corresponds to infinite bias, i.e., only Z errors.

FIG. 2. The modified surface code, tailored for biased Z noise,
with logical operators given by a product of Y along the top edge
and a product of X along the left edge. The stabilizers are shown
at right.
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noise. We define the bias η to be the ratio of the probability
of a Z error occurring to the total probability of a non-Z
Pauli error occurring, so that η ¼ pz=ðpx þ pyÞ. For
simplicity, we consider the special case px ¼ py in what
follows. Then for total error probability p, Z errors occur
with probability pz ¼ ½η=ðηþ 1Þ�p, and px ¼ py ¼
½1=2ðηþ 1Þ�p. When η ¼ 1=2, this gives the standard
depolarizing channel with probability p=3 for each non-
trivial Pauli error, and taking the limit η → ∞ gives only Z
errors with probability p. Biased Pauli error models have
been considered by a number of authors [4,22–27], but we
note that there are several different conventions for the
definition of bias. Comparison between channels with
different bias but the same total error rate is facilitated
by the fact that the channel fidelity to the identity is a
function only of p.
Hashing bound.—The quantum capacity is the maxi-

mum achievable rate at which one can transmit quantum
information through a noisy channel [28]. The hashing
bound [29–31] is an achievable rate which is generally less
than the quantum capacity [32]. For Pauli error channels,
the hashing bound takes a particularly simple form [28] and
says that there exist quantum stabilizer codes that achieve a
rate R ¼ 1 −HðpÞ, withH being the Shannon entropy. The
proof of achievability involves using random codes, and it
is generally hard to find explicit codes and decoders that
perform at or above this rate for an arbitrary channel,
especially if one wishes to impose additional constraints
such as local stabilizers. The quantum capacity itself is still
unknown for any Pauli channel where at least two of
ðpx; py; pzÞ are nonzero.
Summary of numerics.—Here we outline our numerical

study of the threshold; see Ref. [33] for full details.
Our numerical implementation makes only a minor

modification to the BSV decoder. To avoid changing the
definitions of the tensors used in Ref. [7], we use the
symmetry by which we can exchange the role of Z noise in
the modified surface code with the role of Y noise in the
standard surface code. Then all of the definitions in Ref. [7]
carry over unchanged. The only difference is that we
perform two tensor network contractions for each decoding
sequence. There is an arbitrary choice as to whether to
contract the network row-wise or column-wise. Rather than
pick just one, we average the values of both contractions.
We empirically observe improved performance with this
modification.
Using bond dimension χ ¼ 48, we see excellent con-

vergence for most of the range of bias (with some caveats
[33]), and across the full range of bias we observe threshold
behavior. Moreover, this threshold is at the hashing bound
for all η ≤ 100. That the performance of the decoder
saturates for η ≥ 300 may be a side effect of an insuffi-
ciently large χ (limited to χ ¼ 48 in our study) or a real
effect due to the presence of relatively low-weight ½Oð ffiffiffi

n
p Þ�

logical errors consisting of only Z errors. In the regions that

are a fixed distance below the threshold, as in Fig. 3, we
observe an exponential decay in the logical failure rate
f ∼ expð−αdÞ, where α may depend on the bias and is an
increasing function of ðpc − pÞ. This constitutes strong
evidence of an error correction threshold.
To obtain an explicit estimate of the threshold pc, we use

the critical exponent method of Ref. [10]; again, see
Ref. [33] for full details. Our results are summarized
in Fig. 1.
Fault-tolerant syndrome extraction.—Our study has

focused on the error correction threshold under the
assumption of ideal syndrome extraction. To see if the
gains observed in this setting carry over to applications in
fault-tolerant quantum computing, one would need to
consider the effects of faulty syndrome measurements
and gates. A full fault-tolerant analysis is beyond the scope
of this work, but we briefly consider the key issues here.
First, the BSV decoder that we have used to investigate

this ultrahigh error threshold is not fault tolerant, but some
clustering decoders are [13]. Developing efficient, practical
fault-tolerant decoders with the highest achievable thresh-
olds remains a significant challenge for the field.
An added complication with a biased noise model is that

the gates that perform the syndrome extraction must at least
approximately preserve the noise bias in order tomaintain an
advantage [4]. For the tailored surface code studied here, one
could appeal to the techniques ofRefs. [4,25], wherewe note
that Y-type syndromes can be measured using a minor
modification of the X-syndrome measurement scheme. We
note that these syndrome extraction circuits are significantly
more complex (involving the use of both ancilla cat states
and gate teleportation) comparedwith the standard approach
for the surface code with unbiased noise, and this added
complexity will undoubtedly reduce the threshold.
More optimistically, we note that the standard method

for syndrome extraction in the surface code [36] can be
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FIG. 3. Exponential decay of the logical failure rate f with
respect to code distance d in the regime p < pc for η ¼ 100 and
χ ¼ 48. We observe scaling behavior of the form f ∼ expð−αdÞ
where α depends on the bias and is an increasing function of
ðpc − pÞ. In this bias regime, the decoder performance is likely
farthest from optimal, but the decay is still clearly exponential
over this range. Other values of η show the same general scaling
behavior, though with different decay rates α. The statistical error
bars from 30 000 trials per point are smaller than the individual
plot points in every case.
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directly adapted to this tailored code and maintains biased
noise on the data qubits. Ancilla qubits are placed in the
centers of both the plaquette and vertex stabilizers of Fig. 2,
and they will be both initialized and measured in the X
basis. Sequences of controlled-X (vertex) and controlled-Y
(plaquette) gates, with the ancilla as the control and data
qubits as the target, yield the required syndrome measure-
ments analogous to the standard method. In this scheme,
we note that high-rate Z errors on the ancilla are never
mapped to the data qubits; low-rate X and Y errors on the
ancilla can cause errors on the data qubits, but the noise
remains biased. Measurement errors will occur at the high
rate, but this can be accommodated by repeated measure-
ment. Note that, as argued by Aliferis and Preskill [4],
native controlled-X and controlled-Y gates are perhaps not
well motivated in a system with a noise bias, but none-
theless this simple scheme illustrates that, in principle,
syndromes can be extracted in this code while preserving
the noise bias. To develop a full fault-tolerant syndrome
extraction circuit in a noise-biased system would require a
complete specification of the native gates in the system and
an understanding of their associated noise models.
Discussion.—Our numerical results strongly suggest that

in systems that exhibit an error bias, there are significant
gains to be had for quantum error correction with codes
and decoders that are tailored to exploit this bias. It is
remarkable that the tailored surface code performs at the
hashing bound across a large range of biases. This means
that it is not just a good code for a particular error model,
but broadly good for any local Pauli error channel once it is
tailored to the specific noise bias. It is also remarkable that a
topological code, limited to local stabilizers, does so well in
this regard.
Many realizations of qubits based on nondegenerate

energy levels of some quantum system have a bias—often
quite significant—towards dephasing (Z errors) relative to
energy-nonconserving errors (X and Y errors). This sug-
gests tailoring other codes, and in particular other topo-
logical codes, to have error syndromes generated by X- and
Y-type stabilizers. Even larger gains might be had by
considering biased noise in qudit surface codes [37,38].
For qubit topological stabilizer codes, the threshold for

exact ML decoding with general Pauli noise can be
determined using the techniques of Ref. [21], which
mapped the ML decoder’s threshold to a phase transition
in a pair of coupled random-bond Ising models. It would be
interesting to explore this phase boundary for general Pauli
noise beyond the depolarizing channel that was studied
numerically in Ref. [21].
We have employed the BSV decoder to obtain our

threshold estimates because of its near-optimal perfor-
mance, but it is not the most efficient or practical decoder
for many purposes. One outstanding challenge is to find
good practical decoders that can work as well or nearly as
well across a range of biases. The clustering-type decoders

[12,13] appear well suited for this task, and they have the
added advantage that some versions of these decoders (e.g.,
Ref. [39]) generalize naturally to all Abelian anyon models
such as the qudit surface codes.
The most pressing open question related to this work is

whether the substantial gains observed here can be pre-
served in the context of fault-tolerant quantum computing.
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