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We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using
single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on
the generation of random unitaries from random quenches, implemented using engineered time-dependent
disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By
analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of
the partition, we show that the protocol can be realized in existing quantum simulators and used to measure,
for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth
in many-body localized systems.
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Atomic physics provides us with the realization of
engineered quantum many-body lattice models. This
includes Hubbard models for bosonic and fermionic cold
atoms in optical lattices [1] and spin models with Rydberg
atoms [2] and chains of trapped ions [3]. Among the
noticeable recent experimental advances are quantumcontrol
and single shot measurements in lattice systems of atoms [4–
11] and ions [12,13] achieving single site resolution, as
illustrated for atoms in optical lattices by the quantum gas
microscope [14]. This provides us not only with a unique
atomic toolbox to prepare equilibrium and nonequilibrium
states of quantum matter but also with the opportunity to
access in experiments novel classes of observables, beyond
the familiar low-order correlation functions. An outstanding
example is the measurement of Rényi entropies, defined
as SðnÞðρAÞ ¼ ½1=ð1 − nÞ� logTrðρnAÞ (n > 1) with ρA ¼
TrSnA½ρ� the reduced density matrix of a subsystem A ⊂ S
of a many-body system S, which gives us a unique signature
of entanglement properties inmany-bodyphases anddynam-
ics [15], and is also of interest in the ongoing discussion on
“quantum supremacy” [16–20].
Below, we will describe a protocol for measuring Rényi

entropies SðnÞðρAÞ based on random measurements realized
as random unitary operators applied to ρA and subsequent
measurements of a fixed observable [21]. In our approach,
the required random unitaries are implemented using the
same atomic, molecular, and optical (AMO) toolbox which
underlies the preparation of quantum phases and dynamics
(cf. Fig. 1). This enables a physical implementation of the
protocol, applicable to generic Hubbard and spinmodels and
in arbitrary dimensions. We emphasize that, in contrast
to recent protocols to measure nth order Rényi entropies,
which requires the preparation of n identical copies [22–25],
a random measurement protocol requires only a single

(a)

(b) (c)

FIG. 1. Measuring Rényi entropies via random quenches.
(a) Experimental sequence: For a given reduced density matrix
ρA ¼ TrSnA½ρ�, we apply (i) a random unitary UA realized by a
series of η random quenches [cf. Eq. (3)], implemented using
(spin-dependent) disorder potentials [cf. Eq. (4)]; this is followed
by (ii) a projective measurement (readout) with a quantum gas
microscope, to obtain SðnÞðρAÞ from Eq. (6). (b) Within our
protocol, we illustrate for the ground state of a 2D Heisenberg
model (8 × 8 sites) area law scaling of Sð2Þ ∝ ∂A (with ∂A the
perimeter of area A), showing convergence with increasing η to
the exact value (black line). (c) For the many-body localized
phase of the 1D Bose-Hubbard model (ten sites and five
particles), we illustrate a measurement of the logarithmic growth
of Sð2ÞðρAÞ at half partition as a function of time. The exact value
of Sð2ÞðρAÞ (solid lines) is compared to the estimated values
(dots). The dashed lines are linear fits. The simulated experiments
in (b) and (c) assume NU ¼ 100 random unitaries and NM ¼ 100
measurements per random unitary (see the text).
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quantum system [21] and thus can be implemented directly
with existing AMO and solid state platforms [26,27]. A
central aspect in any measurement scheme for Rényi
entropies, as for quantum state tomography [28–30], is
scaling of the experimental effort with the size of the system
of interest: Below, we provide a detailed analysis and
feasibility study of the required resources in terms of the
number of measurements and random unitaries and verifi-
cation of random unitaries [31].
Random measurements to infer Rényi entropies have

been discussed in a quantum information context [21].
These consist in applying to ρA a random unitary matrixUA
from the circular unitary ensemble (CUE) followed by a
measurement in the fixed computational basis to access to
the outcome probabilities PðsÞ ¼ Tr½UAρAU

†
APs� with

Ps ¼ jsihsj projectors onto the basis states jsi. The
extraction of the Rényi entropies SðnÞðρAÞ is then based
on the estimation of the statistical moments

hPðsÞni ¼ hTr½ðUAρAU
†
AÞ⊗nP⊗n

s �i; ð1Þ
with h…i the ensemble average over random unitaries. In
order to obtain SðnÞðρAÞ from Eq. (1), one relies on the
statistical properties of the correlators between the matrix
elements uij ofUA. In particular, for n ¼ 2, one exploits the
identity

husi1u�si2usi3u�si4i ¼
δi1;i2δi3;i4 þ δi1;i4δi2;i3

N AðN A þ 1Þ ; ð2Þ

with N A the Hilbert space dimension of A, to obtain
hPðsÞ2i ¼ ð1þ Tr½ρ2A�Þ=½N AðN A þ 1Þ� [21]. Inverting this
relation warrants direct access to Sð2ÞðρAÞ as a function of
PðsÞ [32]. In the following, we use that the required
identities of nth order correlators of the CUE are repro-
duced by unitary n designs [33,34], i.e., ensembles of
random unitary matrices approximating the CUE by having
the same correlators up to nth order [35]. In contrast to the
seminal experiments measuring Sð2ÞðρAÞ in a Bose-
Hubbard (BH) model [24] which rely on the preparation
of physical copies of the quantum system [22], the present
scheme works with single copies [21]: The moments (1)
can be interpreted as a replica trick to create n virtual copies
[cf. Eq. (1)]. We present additional details and a diagram-
matic approach in Supplemental Material [36].
While in a quantum information context random uni-

taries from unitary n designs are generated as a sequence of
random gates [21,43,44], we show that such random
unitaries can be realized with the existing AMO toolbox,
as a series of quenches in interacting Hubbard and spin
models with engineered disorder:

UA ¼ e−iH
η
AT…e−iH

1
AT; ð3Þ

followed by a readout with a quantum gas microscope (see
Fig. 1). Here, Hj

A denotes the Hamiltonian for a given

disorder pattern j. In total, we consider η quenches of
duration T, with T tot ≡ ηT the total time. The questions to
be addressed are (i) the convergence to the CUE in terms
of n designs [cf. Eq. (2)] with “depth” η, in view of
experimentally available disorder Hamiltonians and exper-
imental verification, and (ii) the scaling of statistical errors
with the number of applied random unitaries NU and the
number of measurements per random unitary NM. We
emphasize the relation of (i) to the ongoing theoretical
[39–41,45,46] and experimental [47] investigation of ther-
malization dynamics of periodically driven quantum sys-
tems and their connection to quantum chaos [48]. The type
of problems which can be addressed with our protocol are
illustrated in Figs. 1(b) and 1(c), with the simulation of the
measurement of an area law for a 2D-Heisenberg model
[49] and of the entropy growth in many-body localized
(MBL) [50–54] dynamics in the BH model, with details on
the simulations presented below and in Supplemental
Material [36].
Protocol for the Fermi-Hubbard model.—In view of

recent progress in realizing the 2D Fermi-Hubbard (FH)
model [5–8], we wish to illustrate the protocol for spinful
fermions in a 2D optical lattice [cf. Fig. 1(a)]. The FH
Hamiltonian is

HF ¼ −tF
X

hi;li∈S;σ
c†iσclσ þ U

X

i∈S
ni↑ni↓ ð4Þ

with hopping amplitude tF and interaction strength U.

Here cð†Þi;σ denote fermionic annihilation (creation) operators
at lattice site i ¼ ðix; iyÞ and spin σ ∈ f↑;↓g, and

niσ ¼ c†iσciσ. We will add disorder below to realize Hj
A.

We assume that the (non)equilibriumquantummany-body
state ρ of interest has been prepared in the full system S. The
experimental sequence to measure Rényi entropies SðnÞðρAÞ
of the reduced density matrix ρA ¼ TrSnA½ρ� is shown in
Fig. 1(a): (i) Isolation of the partitionA of dimension (Lx,Ly)
and L≡ LxLy the number of isolated sites is obtained via

spatial addressing [cf. Fig. 1(a)]. The Hamiltonian Hj
A is

realized as restriction Hj
A ¼ HFjA þP

i∈A;σδ
j
i;σniσ with

random lattice offsets δji;σ . Because of particle and spin
conservation in HF, UA decomposes into blocks
with different particle numbers N and magnetization Sz,

UA ¼ ⨁
N;Sz

UðN;SzÞ
A and ρA ¼ ⨁

N;Sz

ρðN;SzÞ
A . Below, we study in

eachblock the realization of a randomunitaryUðN;SzÞ
A froman

n design (n ¼ 2; 3;…) as a function of η and T tot. (ii) Lattice
site occupations sN;Sz are measured with a quantum gas
microscope, where sN;Sz ¼ ðni;↑; ni;↓Þi determines N ¼P

i∈Aðni↑ þ ni↓Þ and Sz ¼
P

i∈Aðni↑ − ni↓Þ. By repeating
steps (i) and (ii) with the same UA, i.e., the same series of
random quenches, to perform NM measurements, one
estimates the probabilities PðsN;SzÞ ¼ Tr½UAρAU

†
APsN;Sz

�
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with PsN;Sz
the projector onto the Fock state jsN;Szi [55].

Repeating this for NU different unitaries, we estimate the
ensemble averages hPðsN;SzÞni, related to functionals of ρA
[21]. Using 1- and 2-design properties, we find

hPðsN;SzÞi ¼
Tr½ρðN;SzÞ

A �
N ðN;SzÞ

A

; ð5Þ

hPðsN;SzÞ2i ¼
Tr½ρðN;SzÞ

A �2 þ Tr½ρðN;SzÞ2
A �

N ðN;SzÞ
A ðN ðN;SzÞ

A þ 1Þ
; ð6Þ

whereN ðN;SzÞ
A is the Hilbert space dimension of the particle-

spin block in the subsystem A. Hence, from estimations

of hPðsN;SzÞni (n ¼ 1, 2), Tr½ρðN;SzÞ2
A � can be extracted.

By summation over all blocks, one obtains the total purity

p2 ≡ Tr½ρ2A� ¼
P

N;SzTr½ρ
ðN;SzÞ2
A � and finally Sð2ÞðρAÞ.

Higher-order ensemble averages hPðsN;SzÞni are related to

higher-order powers TrðρðN;SzÞn
A Þ [31].

Generation of random unitaries.—Below, we present a
numerical study of the generation of approximate unitary
2-designs [56–59], focusing on the convergence of the UA
[cf. Eq. (3)] to the CUE as a function of time T tot ¼ ηT and
depth η of the “random circuit.”While the full system S can
be arbitrary large, we emphasize that—in view of the
scaling of statistical errors with the partition size A (see
below)—the applicability of the protocol in an actual
experiment will a priori be limited to domains A of
moderate size, which can be simulated numerically.
Here, we present results for the Heisenberg model in 1D
and 2D, which allows larger partition sizes, and we refer to
Ref. [31] for the FH model. The Hamiltonian is
Hh ¼ J

P
hiliσi:σl, as obtained from Eq. (4) in the limit

U ≫ tF at half filling (alternatively with Rydberg atoms
[60] or trapped ions [61]). Here, σi are the Pauli matrices,
and J ¼ t2F=U. To realize random quenches, we consider
disorder potentials δji ¼ δji↑ − δji↓ drawn for each quench j
from a normal distribution with standard deviation δ, i.e.,
Hj

A ≡HhjA þP
i∈Aδ

j
iσ

z
i [62].

Figure 2 shows the error of the estimated purity ðp2Þe of
various test states ρA (defined in the caption) for partitions
A of various sizes L in 1D (L ¼ Lx) and 2D (L ¼ LxLy)
[64]. According to Figs. 2(a)–2(c), for a fixed quench time
JT ¼ 1 and disorder strength δ ¼ J, the error decreases
exponentially with growing JT tot=L ¼ η=L towards a
plateau, which corresponds to the statistical error threshold
(see below). Thus, our results indicate “efficient” conver-
gence of UA to an approximate 2-design, after a total time
T tot which scales linearly with L, as in conventional random
circuits based on engineered gates [56–58]. Note that our
simulations show that product states, which are prepared in
an experiment with high fidelity, provide good indicators of
the convergence of the generated unitaries.

For a given total time T tot, set in an experiment by the
finite coherence time, we show in Fig. 2(d) the existence
of an optimal quench time JT ≈ 1 to minimize errors.
This reflects the trade-off between the requirements (i) to
evolve the system for each quench j during a time
sufficiently large compared to time scales J−1; δ−1 set by
the Hamiltonian [65], i.e., to prevent a quantum Zeno
effect, and (ii) to change the disorder pattern frequently
to prevent localization. There also exists an optimal
disorder strength δ ≈ J [36], resulting from a trade-off
between localizing effects in the limit δ ≫ J and a
vanishing random component of the applied quenches
in the limit δ ≪ J. We note that the use of a single
disorder pattern, combined with random quench times
T → Tj, represents another possibility to generate the
required random unitaries [36].
Our findings, in particular, the convergence to approxi-

mate 2-designs and the corresponding scalings, also apply
to generic Fermi- and Bose-Hubbard models and quantum
Ising models [31]. Moreover, we emphasize that (i) our
measurement scheme does not rely on the knowledge of the
applied unitaries UA and (ii)—with respect to state-of-the-
art AMO setups—the measurement protocol is robust
against imperfect reproducibility of the generated unitaries,
finite detection fidelity, and decoherence [31]. While we are
interested in this work in the limit of large times T tot where
approximate 2-designs are created (as part of our meas-
urement scheme), we finally remark that random quenches
in AMO systems provide a platform to study fast thermal-
ization dynamics towards quantum chaos [31] and

(a) (b)

(c) (d)

FIG. 2. Creation of approximate 2-designs in the Heisenberg
model. (a)Average error of the estimated purity jðp2Þe − ðp2Þj for a
unidimensional partition of size L ¼ 8 and various test states: an
antiferromagnetic state jψAFMi, the phase separated state
jψPSi ¼

Q
i;ix≤Lx=2

j↓ii
Q

i;ix>Lx=2
j↑ii, a pure random state jψ randi

with Sz ¼ 0, and the mixed state ρA ¼ 1
2
ðjψAFMihψAFMjþ

jψPSihψPSjÞ. (b),(c) Error for ρA ¼ jψAFMihψAFMj for (b) unidi-
mensional partitions (L ¼ Lx) and (c) two-dimensional partitions
(L ¼ LxLy). (d) Optimization of the quench time JT for fixed total
time T tot and disorder strength δ ¼ J. For all panels, we average
over NU ¼ 500 unitaries and consider NM ¼ ∞.
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the entanglement growth associated with random time
evolution [66].
Statistical errors.—We now discuss the statistical errors

due to a finite number of random unitaries NU and of
measurements NM per unitary. For simplicity, we assume

that ρA ¼ ρðN;SzÞ
A describes a state in a single spin-particle

sector with dimension N ðN;SzÞ
A , where random unitaries

from the CUE are created. Since the following discussion is
not specific to an underlying model, we also drop the labels
ðN; SzÞ. In Fig. 3(a), the average error of the purity is shown
as a function of NU, decreasing as 1=

ffiffiffiffiffiffiffi
NU

p
for fixed NM. In

Fig. 3(b), it is represented as a function of NM, for NU ¼
100 and 1000. We find that, for NU ≫ 1, the error scales as
jðp2Þe − p2j ∼ ðC2 þN A=NMÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ANU

p
, where C2 ¼

Oð1Þ is largest for pure states. The results are confirmed
by the analytical study presented in Ref. [31]. The first
term, independent of NM, arises from the finite value of NU
[21]. The second originates from the finite number NM of
measurements. It leads to a requirement of NM ∼

ffiffiffiffiffiffiffiffi
N A

p
to

determine the purity up to an error of the order 1=
ffiffiffiffiffiffiffi
NU

p
.

This scaling is directly related to the statistics of doublons
obtained when sampling a discrete variable (the birthday
paradox [67]).
The total number of measurements NMNU scales poly-

nomially with the Hilbert space dimension N A and thus
exponentially with the size of A (independently of the total
system S). However, compared to quantum state tomog-
raphy, the exponent is favorable and allows us to perform
measurements of Sð2ÞðρAÞ for subsystem sizes, which are,
for instance, compatible with the examples in Fig. 1.
Application to physical examples.—We conclude our

discussion by presenting applications of the protocol
investigating entanglement properties of quantum many-
body states jψi. As a first example, we demonstrate in
Fig. 1(b) the measurement of an area law in a 2D
Heisenberg model. We consider a system S prepared in
the Sz ¼ 0 ground state jψi of Hh on an 8 × 8 square
lattice, obtained numerically with the density matrix
renormalization group (DMRG) [68]. For rectangular

partitions A with size L ¼ LxLy placed at the center of
the system, we estimate the second Rényi entropy Sð2ÞðρAÞ
of the reduced density matrices ρA ¼ TrSnA½jψihψ j� as a
function of the partition boundary ∂A ¼ 2ðLx þ Ly − 2Þ.
We observe that the estimated Rényi entropy converges to
the area law result [49] with an increasing number of
quenches η. The quench parameters are δ ¼ J ¼ 1=T. Note
that we have used here a finite number of unitaries NU ¼
100 and a finite number of measurements NM ¼ 100. As
second example, Fig. 1(c) shows for a 1D Bose-Hubbard
model the entanglement growth in the MBL phase [51,52],
with details on the model and parameters summarized in
Supplemental Material [36]. According to Fig. 1(c), the
estimated second-order Rényi entropy as a function of
time clearly allows us to distinguish MBL from Anderson
localization.
Protocol based on local unitaries.—The measurement

scheme described above relies on global entangling unitaries
acting on the entire Hilbert space. As an alternative, we can
use local unitaries, which act individually on local constitu-
ents i ¼ 1;…; L (e.g., spins) of A. Here, the unitary UA is
given as a product UA ¼ u1 ⊗ � � � ⊗ uL, where each ui is
independently drawn from a unitary 2-design in the local
Hilbert space of dimension d. In the case of a spin system, the
ui can be viewed as a random single spin rotation on the
Bloch sphere. As above, frommeasurements of the local spin
configurationwith outcome s ¼ ðsiÞi¼1;…;L, we compute the
statistical moments hPðsÞni. We find hPðsÞi ¼ 1=dL [69]
and, using the 2-design properties of ui,

hPðsÞ2i ¼
P

A0⊆ATrðρ2A0 Þ
dLðdþ 1ÞL : ð7Þ

Here, we sum over all subsystems A0 ⊆ A, including the
empty subsystem with Tr½ρ2∅�≡ 1. Since the unitaries act
only locally, Eq. (7) holds for each subsystemA0. This allows
us to reconstruct recursively all purities Trðρ2A0 Þ for A0 ⊆ A.
Local unitaries thus allow us to infer more information from
the measurement than global unitaries. This is illustrated in
Fig. 4 for L ¼ 4 spins initialized in the W state. We note,
however, that, due to the recursive reconstruction of the
purities fromEq. (7), this protocol is more prone to statistical
errors [36].

(a) (b)

FIG. 3. Scaling of statistical errors. (a) Average statistical error
of the estimated purity as a function of NU for various NM,
N A ¼ 256. (b) Error as a function of NM, for different N A,
showing birthday paradox scaling NM=

ffiffiffiffiffiffiffiffi
N A

p
. Circles represent

NU ¼ 100 and triangles NU ¼ 1000. The unitaries are sampled
from the CUE numerically [42]. The black lines represent the
expressions given in the text and Ref. [31].

FIG. 4. Protocol with local unitaries. Purity of all (sub)systems
A0 ⊆ A with NU ¼ 2NM ¼ 100. The numbers refer to the indices
i ¼ 1;…; L contained in A0, the green bar to A0 ¼ A. The black
lines indicate the exact values.
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Conclusion and outlook.—Our protocol allows the
measurement of Rényi entropies based on single copies
in existing AMO setups: For example, to obtain the purity
of ρA of a partition A with L ¼ 14 spins, as part of an
arbitrarily large many-body system, one needs for an
accuracy of ∼5% to create unitaries during a time JT tot ∼
25 and to perform NM ¼ 500 measurements for NU ¼ 100
unitaries. While we have focused on the measurement of
second-order Rényi entropies, higher-order entropies are
also accessible although with increasing statistical errors
[31], which provides an interesting perspective to extend
the protocol to von Neumann entropies or the entanglement
spectrum [70–72].
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