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The controlled generation and identification of quantum correlations, usually encoded in either qubits or
continuous degrees of freedom, builds the foundation of quantum information science. Recently, more
sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed
to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more
than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a
discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine
the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we
show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among
their spins, among their momenta, as well as across their spins and momenta. We discuss possible
experimental realizations with atomic and photonic systems.
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Introduction.—Sharing quantum correlations between
distant parties is an indispensable condition for most tasks
in quantum communication [1]. In the most common
scenario, quantum information is encoded into a single,
well-controlled degree of freedom (DOF), such as spin,
polarization, or external degrees of freedom [2,3]. In some
cases, however, establishing entanglement among several
DOF can provide a decisive advantage [4–12]. For exam-
ple, so-called hyperentanglement, i.e., entanglement in
multiple DOF [4], can improve the capacity of dense
coding in linear optics [7], or enhance the performance
of quantum teleportation [6]. Similarly, architectures using
hybrid entanglement, i.e., entanglement across discrete and
continuous variables [5,13], have been suggested as a
promising platform for quantum information, being able
to overcome the limitations posed by the finite detection
efficiencies of traditional approaches to quantum cryptog-
raphy and computing [8,12].
Quantum correlations can be classified in a hierarchical

order [14–16]; their strongest manifestations are Bell
correlations, or nonlocality [17]. Certain quantum infor-
mation protocols, such as the realization of secure quantum
communication [18], explicitly require such Bell correla-
tions, rendering the mere presence of entanglement insuf-
ficient. Quantum correlations involving hybrid variables of
single particles are routinely generated and detected in
atom- and photon-based experiments [19–24]. Recently,
hybrid entanglement of photons in spatially or temporally
separated modes was achieved [25,26]. Experiments with
hyperentangled photon states have been reported [6,7,27],
whereas these states contain no correlations across the
different DOF.

Here, we propose a scheme to generate Bell correlations
between internal and external DOF of two spatially
separated particles, as well as across those two DOF;
see Fig. 1. The correlations are revealed through the
violation of a series of Clauser-Horne-Shimony-Holt
(CHSH) inequalities [28]. The fundamental element of
our scheme is a hybrid beam splitter which simultaneously
entangles internal and external DOF. We show how such an
operation may be experimentally realized with atomic and
quantum optical systems. This allows us to explore new
possibilities for the design of efficient quantum information
protocols that make use of Bell correlations across and
within several DOF at the same time.
Hybrid beam splitters.—We consider particles with

internal (e.g., spin) and external (e.g., momentum) DOF.
Correlations between the two degrees of freedom can be
induced by processes of the type

(a) (b)

FIG. 1. Hyper- and hybrid nonlocality. (a) Hypernonlocality
represents the simultaneous presence of Bell correlations
among more than one DOF of two spatially separated particles.
(b) Hybrid nonlocality identifies Bell correlations among the
discrete DOF of one particle and the continuous DOF of another
distant particle.
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j↓;p↓i → αj↓;p↓i þ βj↑;p↑i; ð1Þ
where ji;pi describes a particle with spin state jii and
momentum p, and jαj2 þ jβj2 ¼ 1. Such processes are
encountered in many physical systems, including cavity-
QED systems [21], birefringent optical materials [23], and
trapped ions under sideband transitions [22,24]. In the
following we focus on identical bosonic particles, where
the above process is combined with an interference effect
due to the indistinguishability of the particles [29,30]. As
we will discuss later in further detail, such an effect can be
generated with the aid of a two-photon Raman process
[31–34], or by combining quarter-wave plates with polar-
izing beam splitters in linear optics [35,36].
We now turn to a more convenient second-quantized

description, with bosonic operators ai;p with ji;pi ¼
a†i;pj0i, where j0i is the vacuum. These operators satisfy
the canonical commutation relations:

½ai;pi
; aj;pj

� ¼ 0; ½ai;pi
; a†j;pj

� ¼ δðpi − pjÞδij: ð2Þ
Let us now consider the process Eq. (1) for jαj2 ¼ jβj2,
restricting to two external orthogonal modes, described by
aj;in1;2 and aj;out1;2 , respectively. Based on the process
Eq. (1), a balanced two-mode beam splitter in both internal
and external DOF can be described as�

a↓;out1
a↑;out2

�
¼ 1ffiffiffi

2
p

�
1 i
i 1

��
a↓;in1
a↑;in2

�
ð3aÞ

and

�
a↓;out2
a↑;out1

�
¼ 1ffiffiffi

2
p

�
1 i
i 1

��
a↓;in2
a↑;in1

�
: ð3bÞ

This hybrid beam splitter leads to the generation of spin-
momentum correlations.
Generation of intra- and inter-DOF nonlocality.—Let us

now consider the setup depicted in Fig. 2. Such an
array was first proposed by Yurke and Stoler [37] who—
using a single DOF and conventional beam splitters—
demonstrated that Bell correlations can be generated with
identical particles from independent sources [38]; see
Refs. [39,40] for experimental realizations with photons
and electrons. Our envisioned sequence is represented in
the form of an array of hybrid beam splitters and phase
shifts, involving four orthogonal external modes R, L, U,
andD. Particles that exit in the modes L andD are received
by Alice, whereas particles in modes R and U are sent to
Bob’s detectors. Alice further controls the phases ϕL and
ϕD while Bob has access to the phases ϕR and ϕU.
We consider two particles entering the setup in the

modes R and L, both with spin state j↓i; i.e., the initial state
is jΨ0i ¼ a†↓;Ra

†
↓;Lj0i. We may consider these particles

created within the setups of Alice and Bob. After sending
their particle into a hybrid beam splitter, one of the output
ports (R or L) is sent to the respective other party, while the

other one (U or D) remains locally accessible (see Fig. 2).
Next, a state-dependent phase shift is imprinted. While in
general one may consider also spin-dependent phase shifts,
for our purposes it suffices to employ phase shifts that
depend only on the external modes: aj;out ¼ eiϕinaj;in.
Finally, employing a second hybrid beam splitter, the local
mode is mixed with the mode that receives the other parties’
particle, followed by a measurement. The measurement can
be either of the external modes, without measuring the spin
state, or of the spin state, without discriminating between
external modes. The described combination of two pairs of
hybrid beam splitters and path-dependent phase shifts
(Fig. 2) transforms the initial state jΨ0i into

jΨi ¼ 1

4

h
eiϕR

�
a†↓;R þ ia†↑;U

�
þ ieiϕD

�
a†↑;D þ ia†↓;L

�i

×
h
eiϕL

�
a†↓;L þ ia†↑;D

�
þ ieiϕU

�
a†↑;U þ ia†↓;R

�i
j0i.
ð4Þ

Violation of CHSH inequalities.—First, we consider
coincidence measurements only of the external DOF.
The detection probabilities for events where both Alice
and Bob each receive exactly one particle are given by

B∶R B∶U
A∶D 1

4
sin2ϕ 1

4
cos2ϕ

A∶L 1
4
cos2ϕ 1

4
sin2ϕ

ð5Þ

as a function of the total phase shift ϕ ¼ ðϕD − ϕL−
ϕR þ ϕUÞ=2. They coincide with those of the linear optical
scheme based only on a single DOF as considered by Yurke
and Stoler [37]. As was shown in their work, one may use
these events to define dichotomic variables as a function of

FIG. 2. Experimental scheme for the generation and verifica-
tion of intra- and inter-DOF nonlocality. Alice and Bob both
prepare one particle in a spin-j↓i state and submit it to a hybrid
beam splitter. One of the output ports is sent to their local
laboratory while the other is sent to the opposite party. By mixing
the local and the received copy using a second hybrid beam
splitter, the desired correlations are established. Both parties now
measure either spin or external DOF of their received particles, as
depicted by the interchangeable measurement devices (white
boxes). The recorded data from the events in which both parties
receive exactly one particle violate a suitable CHSH inequality,
independently of the measured DOF.
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the observed output port. Specifically, assigning the event
þ1 to clicks in the respective upper detector (L for Alice
and U for Bob) and −1 to clicks in the respective lower
detector (D for Alice and R for Bob), we obtain from
Eq. (5) the probabilities Pij for coincidence events of Alice
observing i ¼ �1 and Bob observing j ¼ �1. The nor-
malized expectation value,

EðϕA;ϕBÞ ¼
Pþþ − P−þ − Pþ− þ P−−

Pþþ þ P−þ þ Pþ− þ P−−

¼ − cosðϕA − ϕBÞ; ð6Þ
is a function of the two relative phases ϕA ¼ ϕD − ϕL and
ϕB ¼ ϕU − ϕR, which are under the local control of Alice
and Bob, respectively. Introducing two detector settings for
each party, i.e., angles ϕ0

A;ϕ
0
B;ϕ

1
A;ϕ

1
B, we can formulate the

CHSH inequality [28],

jEðϕ0
A;ϕ

0
BÞ þ Eðϕ1

A;ϕ
0
BÞ þ Eðϕ0

A;ϕ
1
BÞ − Eðϕ1

A;ϕ
1
BÞj ≤ 2;

ð7Þ
whose violation implies that the recorded events are
incompatible with local realism [41,42]. For ϕ0

A ¼ 0,
ϕ1
A ¼ π, ϕ0

B ¼ π=4, and ϕ1
B ¼ −π=4we obtain the maximal

violation of the inequality permitted by quantum mechan-
ics, i.e., Tsirelson’s bound 2

ffiffiffi
2

p
> 2 [43].

Rather than measuring the external DOF, i.e., the par-
ticles’ output port, Alice and Bob can instead choose to
measure the received particles’ spin states. For the events
where Alice and Bob coincidentally receive exactly one
particle, the probabilities for spinmeasurements are given by

B∶↓ B∶↑
A∶↓ 1

4
cos2 ϕ 1

4
sin2 ϕ

A∶↑ 1
4
sin2 ϕ 1

4
cos2 ϕ

: ð8Þ

Here, A (B) represents a particle received by Alice (Bob),
i.e., exiting the output portsD or L (R or U). Assigning the
value þ1 to the detection event of j↑i and −1 to j↓i, we
obtain the expectation value EðϕA;ϕBÞ ¼ cosðϕA − ϕBÞ.
This produces the same violation of the CHSH inequality as
before, this time, however, bymeasuring only spinvariables.
Finally, we consider hybrid detection events. In this

scenario, Alice records which of the two output detectors
click without registering the spin state, while Bob records
only the spin state of the particle that exits on his side in
coincidence, regardless of the output port (or vice versa).
The combined events are described by the probabilities

B∶R B∶U
A∶↓ 1

4
cos2ϕ 1

4
sin2ϕ

A∶↑ 1
4
sin2ϕ 1

4
cos2ϕ

or

B∶↓ B∶↑
A∶D 1

4
sin2ϕ 1

4
cos2ϕ

A∶L 1
4
cos2ϕ 1

4
sin2ϕ

: ð9Þ

Assigning again the events �1 to the spin or external
measurement results as above, we obtain EðϕA;ϕBÞ ¼
� cosðϕA − ϕBÞ, and consequently the violation of the
CHSH inequality by means of hybrid measurements.

To summarize, the state generated by the array of hybrid
beam splitters describes two particles with nonlocal Bell
correlations among their spins, their external DOF, as well
as hybrid nonlocality across the two DOF; see Fig. 1.
Nonlocality is revealed regardless of whether Alice or Bob,
independently of each other, chooses to perform spin or
external measurements.
Central to the generation of these correlations is the

hybrid beam splitter Eq. (3) which entangles the path of an
incoming particle with its internal state. Ultimately, when
the particles reach the detectors, this inter-DOF entangle-
ment renders the choice of DOF for the measurement
irrelevant. The decisive role is played by the first pair of
hybrid beam splitters. Since the measurement is always
limited to a single DOF, the hybrid beam splitters employed
just before the measurement can be replaced by single-DOF
beam splitters in the variable that is subsequently measured,
without affecting the detection probabilities.
The generated quantum correlations are entirely due to

the symmetrization of the bosonic two-particle wave
function [44]. The present scheme thus describes a possible
way to use these correlations, effectively transferring them
from the inaccessible particle labels to the distant modes of
Alice and Bob.
Realization of hybrid beam splitters.—An experimental

realization of the hybrid beam splitter can be achieved with
the aid of a Raman process. An atom in the presence of
bichromatic laser light can undergo a two-photon process
from one internal state to another, j↓i → j↑i (Fig. 3). In
that process the atom absorbs one photon with momentum
ℏk1 and reemits another with momentum ℏk2, thereby
acquiring a total momentum shift of ℏk ¼ ℏðk1 − k2Þ.

(a) (b) (c)

FIG. 3. Hybrid beam splitters. (a)Hybrid beam splitters combine
deflections with a change of the internal quantum state. (b) The
two-photon stimulated Raman transition couples the states j↓i and
j↑i, whose energy difference ω ¼ ω1 − ω2 is resonant with the
two light fields with an effective Rabi frequency of Ω ¼
Ω1Ω2=ð2ΔÞ in the limit of Δ ≫ Ω1;2. In the process a momentum
of ℏk ¼ ℏðk1 − k2Þ is transferred to the atom. The scheme
realizes a pairwise hybrid beam splitter coupling with external
modes ðin=outÞ1 ¼ p and ðin=outÞ2 ¼ pþ ℏk. (c) Optical reali-
zation of a hybrid beam splitter with externalmodes ðin=outÞ1 ¼ R
and ðin=outÞ2 ¼ U, and internal polarization states. The first
polarizing beam splitter (PBS1) transmits all photons in one
polarization state, while deflecting all others. After passing
through quarter-wave plates (QWP) the photons enter PBS2,
whose transmission properties are opposite to PBS1. The combi-
nation realizes the hybrid coupling, as described in Eq. (3).
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This stimulated Raman transition has been widely
exploited in atom cooling [31,33,45,46], matter-wave
interferometers [32,34,47–49], and the generation of syn-
thetic spin-orbit couplings [50,51]. Most importantly, the
internal state of the atom becomes correlated with its
momentum, producing a coherent superposition of j↓;pi
and j↑;pþ ℏki. The bias of the superposition can be
experimentally controlled by adjusting the interaction time
τ of the Raman process. In particular, a balanced two-mode
process can be realized with a π=2 pulse by setting
τ ¼ π=ð2ΩÞ, where Ω is the effective two-photon Rabi
frequency (Fig. 3). This leads to the transformation
j↓;pi → ðj↓;pi þ eiϕj↑;pþ ℏkiÞ= ffiffiffi

2
p

and j↑;pþ ℏki →
ðj↑;pþ ℏki þ eiϕj↓;piÞ= ffiffiffi

2
p

, where the accumulated
phase ϕ can be controlled adjusting the phases of the
lasers. The transformation has indeed the form of Eq. (1)
and realizes the required hybrid coupling between
the resonant pair of states j↓;pi and j↑;pþ ℏki.
Manipulating k allows us to select the pair of states which
is coherently coupled by the process. For instance, by
changing the sign of k (i.e., the orientation of the two
lasers), the pair j↓;pþ ℏki and j↑;pi is coupled. We
emphasize that each of the hybrid beam splitters in Fig. 2
effectively only acts on a single pair of states, due to the
choice of the initial state. Hence, it suffices to realize either
Eq. (3a) or Eq. (3b) for a suitable set of external states by
means of the Raman process. Detailed treatments of the
Raman process can be found in the literature; see, e.g.,
Refs. [31–34,46–48]. Spin and momentum states can
further be manipulated individually with high accuracy
using resonant laser manipulations and Bragg techniques,
respectively [32,48,52,53].
We remark that even if the momenta of the two coupled

modes are not perpendicular inR3, as is commonly the case
in atom interferometry experiments, the process still
realizes a hybrid beam splitter. The only important aspect
is orthogonality in Hilbert space, which is always achieved
by the Raman process for nonzero momentum transfer.
A hybrid beam splitter may also be realized in optical

systems, creating correlations between the photons’ polari-
zation (internal) and their path (external). A combination of
two polarizing beam splitters and quarter-wave plates, as
depicted in Fig. 3(c), realizes the required coupling
described by Eq. (3) with external modes ðin=outÞ1 ¼ R
and ðin=outÞ2 ¼ U, and ↓;↑ correspond to horizontal and
vertical polarization states, respectively. The polarizing
beam splitter PBS1 transmits all photons in a specific
polarization state, e.g., ↓, while deflecting photons with an
orthogonal polarization, e.g., ↑ (independently of their
incoming path) [35,36]. The quarter-wave plates act as
beam splitters on the polarization state without affecting the
path; e.g., a↑;R → ða↑;R þ ia↓;RÞ=

ffiffiffi
2

p
. The second polariz-

ing beam splitter PBS2 transmits the polarization state that
was deflected by PBS1 and deflects the previously trans-
mitted one. The described combination realizes a hybrid
beam splitter in a linear optical system.

Hybrid entanglement implies quantum correlations
involving a continuous variable. In the setup depicted in
Fig. 2, the external DOF is limited to four possible states,
which effectively renders it discrete. Even though the scheme
presented here involves only a finite number of momentum
states, the underlying Hilbert space of the external DOF is
unbounded and is described by continuous variables [54–
56]. In atomic systems, theparameterk of theRamanprocess
can be continuously tuned to generate quantum correlations
between spins and momenta of a continuum of possible state
pairs. In quantumoptical systems, continuous variables in the
form of quadratures can be measured with homodyne
techniques. The scheme in Fig. 2 can be extended by sharing
a local oscillator mode as common phase reference among
Alice and Bob for quadrature measurements [57].
Complete Bell-state analysis.—Distinguishing between

the four maximally entangled Bell states, jΨ�i ¼ ðj↑↓i �
j↓↑iÞ= ffiffiffi

2
p

and jΦ�i ¼ ðj↓↓i � j↑↑iÞ= ffiffiffi
2

p
, is a fundamen-

tal ingredient for quantum information protocols including
quantum teleportation [58] and dense coding [59]. The
performance of these protocols depends crucially on the
number of Bell states that can be discriminated. To identify
a Bell state in optical experiments, Bell-state analyzers
based on the Hong-Ou-Mandel effect [29] are employed
[60–62]. The two potentially spin-entangled particles are
distributed among the two input ports of a standard beam
splitter. The detection events after the beam splitter can be
unambiguously traced back to specific Bell states among
the two input modes. However, in some cases the result
may be inconclusive, and only two out of four Bell states
can be distinguished [60,62–67]. It is possible to circum-
vent this limitation by making use of hyperentangled input
states [6]. Even without involving hyperentangled states,
we will see below that a hybrid beam splitter can render a
Bell-state analyzer susceptible to the two Bell states that
cannot be distinguished by the conventional setup.
First, we recall the results [62] for a standard beam

splitter that acts only on the external degrees of freedom
and realizes the transformation�

aj;out1
aj;out2

�
¼ 1ffiffiffi

2
p

�
1 i
i 1

��
aj;in1
aj;in2

�
; ð10Þ

for j ¼ ↑;↓. Exactly one particle is submitted into each of
the two input ports aj;in1 and ak;in2 . Output events with
exactly one particle in each output port aj;out1 and ak;out2
with different spin states j ≠ k then identify the Bell state
jΨ−i ≃ ða†↑;in1a

†
↓;in2

− a†↓;in1a
†
↑;in2

Þj0i ≃ a†↑;out1a
†
↓;out2

j0i≃
a†↓;out1a

†
↑;out2

j0i. Here, we use the symbol ≃ to indicate
equality up to a constant factor after disregarding events
with more than one particle in each of the input ports. If
instead both particles are registered in the same output port,
again with different spin states, we reveal the Bell state
jΨþi ≃ ða†↑;in1a

†
↓;in2

þ a†↓;in1a
†
↑;in2

Þj0i ≃ a†↑;out1a
†
↓;out1

j0i≃
a†↑;out2a

†
↓;out2

j0i. The two remaining Bell states jΦ�i cannot
be unambiguously identified using this scheme.
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Let us now consider a Bell-state analyzer based on the
hybrid beam splitter Eq. (3). The detection events of two
particles exiting at different ports in the same spin state ide-
ntify the Bell state jΦ−i≃ ða†↓;in1a

†
↓;in2

− a†↑;in1a
†
↑;in2

Þj0i≃
a†↑;out1a

†
↑;out2

j0i≃ a†↓;out1a
†
↓;out2

j0i. Conversely, events with
two particles in the same output port but with different
spin states indicate the Bell state jΦþi≃ ða†↓;in1a

†
↓;in2

þ
a†↑;in1a

†
↑;in2

Þj0i≃ a†↑;out1a
†
↓;out1

j0i≃ a†↑;out2a
†
↓;out2

j0i. The
other two Bell states jΨ�i cannot be unambiguously dis-
tinguished using the hybrid beam splitter. The scheme is able
to detect the two Bell states which remain unresolved by the
standard approach and vice versa. Hence, the two methods
complement each other and together provide sufficient
means to discriminate among all four Bell states.
Conclusions.—Hybrid beam splitters mix internal and

external states of the incoming particles and thereby
generate hybrid entanglement across two DOF. Such
processes can be realized with existing optical and atomic
systems. We demonstrated how this effect can be exploited
in a suitable array of beam splitters to generate Bell
correlations among multiple DOF of two independent
bosonic particles. The correlations are analyzed by means
of CHSH inequalities which are violated regardless of
whether spin or external measurements are performed on
either of the particles. First, this indicates hypernonlocality,
i.e., nonlocality in more than one DOF. Second, since
nonlocality is also revealed when two different DOF are
measured, we further observe hybrid nonlocality, i.e., Bell
correlations between a discrete (spin) and a continuous
(momentum) DOF of spatially separated particles. Since
nonlocality represents the strongest form of quantum
correlations, these can be used to realize the most exigent
quantum information protocols. By efficiently harnessing
hybrid nonlocal and/or hypernonlocal quantum states,
opportunities for the design of new protocols or for
improvements of existing schemes may open up.
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