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Here, we present the most general framework for n-particle Hardy’s paradoxes, which include Hardy’s
original one and Cereceda’s extension as special cases. Remarkably, for any n ≥ 3, we demonstrate that
there always exist generalized paradoxes (with the success probability as high as 1=2n−1) that are stronger
than the previous ones in showing the conflict of quantum mechanics with local realism. An experimental
proposal to observe the stronger paradox is also presented for the case of three qubits. Furthermore, from
these paradoxes we can construct the most general Hardy’s inequalities, which enable us to detect Bell’s
nonlocality for more quantum states.
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Introduction.—Hardy’s paradox is an important all-
versus-nothing (AVN) proof of Bell’s nonlocality, a pecu-
liar phenomenon that has its roots deep in the famous
debate raised by Einstein, Podolsky, and Rosen (EPR) in
1935 [1]. Hardy’s original proof [2,3], for two particles, has
been considered as “the simplest form of Bell’s theorem”
and “one of the strangest and most beautiful gems yet to be
found in the extraordinary soil of quantum mechanics” [4].
To date, a number of experiments have been carried out to
confirm the paradox in two-particle systems [5–13]; theo-
retically, Hardy’s paradox has been generalized from the
two-qubit to a multiqubit family [14]. The two-particle
Hardy’s paradox can be stated in an inspiring way as
follows [15]: In any local theory, if the events A2 < B1,
B1 < A1, and A1 < B2 never happen, then, naturally, the
event A2 < B2 must never happen. According to quantum
theory, however, two-particle entangled states and local
projective measurements exist that break down these local
conditions; that is, in terms of probabilities,

PðA2 < B1Þ ¼ PðB1 < A1Þ ¼ PðA1 < B2Þ ¼ 0;

and PðA2 < B2Þ > 0;

where the last condition evidently conflicts with the predi-
ction of local theory, leading to a paradox. In [14], the author
showed that, for the n-qubit Greenberger-Horne-Zeilinger
(GHZ) state the maximal success probability (i.e., the last
condition above) can reach f1þ cos½π=ðn − 1Þ�g=2n.
Moreover, a quantum paradox can be naturally trans-

formed to a corresponding Bell’s inequality. For instance,
the paradox mentioned above can be associated to the

following Hardy’s inequality PðA2 < B2Þ − PðA2 < B1Þ−
PðB1 < A1Þ − PðA1 < B2Þ ≤ 0, which is equivalent to
Zohren and Gill’s version [16] of the Collins-Gisin-
Linden-Massar-Popescu inequalities (i.e., tight Bell’s
inequalities for two arbitrary d-dimensional systems, and
the inequality becomes the Clause-Horne-Shimony-Holt
inequality for d ¼ 2) [17]. See, also, [18] for a connection
between Hardy’s inequality and Wigner’s argument.
Demonstrating the conflict between quantum mechanics

and local theories has had a long history ever since the EPR
paper. It has brought out many important contributions to
both physical foundations and applications, particularly
introducing the concept of entanglement, viewed as “the
characteristic trait of quantummechanics” that distinguishes
quantum theory from classical theory [19]. Among many
others, the most important breakthrough was due to Bell
who put the debate of the conflict on firm, physical ground in
a statistical manner [20], and it has been regarded as “the
most profound discovery of science” [21]. The Clause-
Horne-Shimony-Holt (CHSH) inequality [22], serving as a
revised version of Bell’s original one, has been adopted to
reveal nonlocality in various experiments, ranging from
Aspect’s experiment [23] in 1981 to some very recent
loophole-free Bell-experiment tests [24–26]. On the other
hand, differing from the statistical violation of inequalities,
the AVN proof of nonlocality allows us to demonstrate the
contradiction in an elegant, logical paradox, such that its
experimental practice will be, in principle, simplified to a
single-run operation. Among various AVN proofs, the GHZ
paradox [27] has been carried out experimentally based
on entangled photons [28]. In spite of that, it applies to
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three-particle systems [27] or more [29,30], but has, so far,
defied any two-particle formulation.
Therefore, Hardy’s paradox, with post-selections taken

into consideration, stands out among the others, since (i) it
applies to the two-party scenario, (ii) it can be generalized
to multiparty and high-dimensional scenarios [14]
(hereafter, we would like to refer to Cereceda’s version
of the n-qubit Hardy’s paradox or inequality as the standard
Hardy’s paradox or inequality, to distinguish it from the
most general ones that we shall present in this Letter), and
(iii) inequalities constructed based on it allow us to detect
more entangled states and provide a key element to prove
Gisin’s theorem [31,32]—which states that any entangled
pure state violates Bell’s inequality [33]. The GHZ paradox
does not share most of these merits (see, also, the Mermin-
Ardehali-Belinskii-Klyshko inequality [34–36], which was
also a kind of generalization of CHSH inequality to n
qubits, but was not violated by all pure entangled states, not
even by all the generalized GHZ states).
In what follows, we present our main results on the

generalized Hardy’s paradoxes and their corresponding
inequalities, along with an experimental proposal to
observe the stronger quantum paradoxes in a three-qubit
system.
Generalized Hardy’s paradox.—For simplicity, we shall

use the notations in [32] to formalize the generalized
n-qubit Hardy’s paradox. Consider a system composed
of n qubits that are labeled with the index set
In ¼ f1; 2;…; ng. For the kth qubit, we choose two
observables fak; bkg that take binary values f0; 1g in the
local realistic model. Let us denote aα ¼

Q
k∈αak and b̄α ¼Q

k∈αb̄k with b̄k ¼ 1 − bk for an arbitrary subset α ⊆ In,
k̄ ¼ In=k for arbitrary k ∈ In and ᾱ ¼ In=α. Moreover, we
denote jαj as the size of the subset α, and abbreviate the
probability pðx ¼ 1; y ¼ 1;…Þ as pðxy…Þ.
We now present the following theorem:
Theorem 1.—For any given sizes jαj and jβj ð2 ≤ jαj ≤

n; 1 ≤ jβj ≤ jαjÞ satisfying the constraint jαj þ jβj ≤ nþ 1,
then in the local hidden variable (LHV) model, the
following zero-probability conditions

pðbαaᾱÞ ¼ pðb̄βaβ̄Þ ¼ 0; ∀ α; β ∈ In;

must lead to the following zero-probability condition

pðaInÞ ¼ 0:

Proof of Theorem 1.—Note that the above equations are all
linear for the LHV model which is a convex polytope,
whose extreme points are the deterministic LHV model.
Thus, we only need to prove this theorem for the deter-
ministic LHV model, that is,

bαaᾱ ¼ b̄βaβ̄ ¼ 0; ∀ α; β ∈ In

must lead to the following zero-probability condition

aIn ¼ 0:

We shall prove it by reductio ad absurdum. Suppose
aIn ≠ 0, then, in the deterministic LHV model, one directly
obtains

bα ¼ b̄β ¼ 0; ∀ α; β ∈ In;

which implies at least one of jβj observables bk’s arbitrarily
chosen from the set B ¼ fb1; b2;…; bng must take the
value “1”—namely, in the set B, we have at least n −
ðjβj − 1Þ observables equal to 1—and which, similarly,
implies at least one of jαj observables bk’s arbitrarily
chosen from the set B must take the value “0”—namely,
in the set B we have at least n − ðjαj − 1Þ observables equal
to 0. Hence, at most, ðjαj − 1Þ observables bk’s equal 1.
This yields ðjαj − 1Þ ≥ n − ðjβj − 1Þ, i.e., jαj þ jβj ≥ nþ
2, in contradiction to the constraint jαj þ jβj ≤ nþ 1. ▪
For the sake of convenience, we label the generalized

paradox as the ½n; jαj; jβj� scenario. It can be verified,
directly, that the standard Hardy’s paradox is the ½n; n; 1�
scenario by taking jαj ¼ n, jβj ¼ 1. Nevertheless, quantum
mechanics gives a different prediction that the success
probability pðaInÞ can be nonzero, thus, resulting in a
generalized Hardy’s paradox, stated as:
Theorem 2.—For the generalized GHZ state, by choos-

ing appropriate quantum projective measurements on n
qubits, the success probability pðaInÞ is always greater than
zero, and, for any n ≥ 3, we can always have a stronger
quantum paradox in comparison to the standard Hardy’s
paradox.Proof of Theorem 2.—Quantum mechanically, let
us consider the generalized GHZ state

jΨigGHZ ¼ h0j0…0i þ h1j1…1i;
with h0 ¼ jh0j ≥ 0, h1 ¼ jh1jeiθh (The usual GHZ state
corresponds to jh0j ¼ jh1j ¼ 1=

ffiffiffi
2

p
, θh ¼ 0). We always

assume the measurements ai’s, bi’s, and b̄i’s for the n
observers are in the direction a0j0i þ a1eiθa j1i,
b0j0i þ b1eiθb j1i, and b1j0i þ b0eiðθbþπÞj1i, respectively,
by direct calculation, we then obtain

pðbαaᾱÞ ¼ jbjαj0 an−jαj0 jh0j þ bjαj1 an−jαj1 jh1jeiϑj2;
pðb̄βaβ̄Þ ¼ jbjβj1 an−jβj0 jh0j þ bjβj0 an−jβj1 jh1jeiϑ0 j2;
pðaNÞ ¼ jan0jh0j þ an1jh1jei½nθa−θh�j2;

respectively, where ϑ ¼ ðn − jαjÞθa þ jαjθb − θh and
ϑ0 ¼ ðn − jβjÞθa þ jβjθb − θh þ jβjπ.
Let pðbαaᾱÞ ¼ pðb̄βaβ̄Þ ¼ 0, we have equations of

angles

ðn − jαjÞθa þ jαjθb − θh ¼ ð2m1 þ 1Þπ;
ðn − jβjÞθa þ jβjθb − θh þ jβjπ ¼ ð2m2 þ 1Þπ;

with m1, m2 ¼ 0; 1; 2;…, and of norms
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bjαj0 an−jαj0 jh0j ¼ bjαj1 an−jαj1 jh1j;
bjβj1 an−jβj0 jh0j ¼ bjβj0 an−jβj1 jh1j:

The following arguments are split into two cases:
Case 1:jβj < jαj: we let m1 ¼ m2 ¼ 0, then, we have

θb ¼ ½jβjπ=ðjαj − jβjÞ� þ θa, nθa − θh ¼ ð1 − ½jαjjβj=
ðjαj − jβjÞ�Þπ, and ½ða0=a1Þ ¼ ðb0=b1ÞðjαjþjβjÞ=ðjαj−jβjÞ ¼
γfjαjþjβj=½ðjαjþjβjÞn−2jαjjβj�g, with γ ¼ ½jh1j=ðjh0jÞ�, and so,
the success probability equals

pðaInÞ ¼
γ2jκ0 − κ1j2

ð1þ γ2Þð1þ κ2Þn
> 0;

κ0 ¼ ei½ðjαjjβjÞ=ðjαj−jβjÞ�π;

κ1 ¼ γ½ð2jαjjβjÞ=nðjαjþjβjÞ−2jαjjβj�;

κ2 ¼ γ½2ðjαjþjβjÞ=nðjαjþjβjÞ−2jαjjβj�:

At γ ¼ 1, on the other hand, the success probability equals

pðaInÞ ¼
1

2n

�
1 − cos

� jαjjβjπ
jαj − jβj

��
:

Note that pðaInÞ is strictly smaller than ð1=2n−1Þ because
½jαjjβj=ðjαj − jβjÞ� cannot be odd. For the standard Hardy’s
paradox, i.e., α ¼ n, β ¼ 1, it reduces to the result in [14] as

PS
n ≡ pðaInÞ ¼

1

2n

�
1þ cos

�
π

n − 1

��
; ð1Þ

where PS
n represents the success probability for the standard

Hardy’s paradox for the n-qubit GHZ state.
Case 2: jβj ¼ jαj: we let m1 ¼ 0, m2 ¼ ðjβj=2Þ (here, jαj

and jβj must be even). Note that, in this case, we have an
independent θh, then, we further let nθa − θh ¼ 0 and
b0 ¼ b1 ¼ 1=

ffiffiffi
2

p
, a0=a1 ¼ γð1=n−jαjÞ, with γ ¼ ½jh1j=

ðjh0jÞ�, and the success probability equals

pðaInÞ ¼
γ2ð1þ κ01Þ2

ð1þ γ2Þð1þ κ02Þn
> 0;

κ01 ¼ γðjαj=n−jαjÞ; κ02 ¼ γ2=n−jαj:

The success probability at γ ¼ 1 equals

PG
n ≡ pðaInÞ ¼

1

2n−1
;

where PG
n represents the success probability for the

generalized Hardy’s paradox for the n-qubit GHZ state.
Combining the above two cases, the theorem is proved as

was claimed. ▪
Remark 1.—As an example, given the GHZ state

jΨiGHZ ¼ ðj00 � � � 0i þ j11 � � � 1iÞ= ffiffiffi
2

p
of n qubits,

Cereceda [14] found that the maximal success probability
for the standard Hardy’s paradox is Eq. (1) But, by
choosing jβj ¼ jαj in the generalized Hardy’s paradox,

for any n ≥ 3, we can have a greater success probability
(see, also, Fig. 1):

PG
n ≡ pðaInÞ ¼

1

2n−1
> PS

n: ð2Þ

Indeed, for GHZ states with n ≥ 3, jαj ¼ jβj ¼
even number is the best choice for generalized Hardy’s
paradoxes [37].
Remark 2.—The ½n; jαj ¼ 2; jβj ¼ 1� scenario resembles

the paradox presented in [38], but the former concerns the
Bell scenario, while the latter discusses the genuine
multipartite nonlocality, which is a subset of the Bell
nonlocality; the ½n; 2 < jαj < n; jβj ¼ 1� scenario is related
to the paradox presented in [39], which discussed the
hierarchy of multipartite nonlocality. Thus, it is of great
interest to further investigate possible connections of the
results in [38,39] with the structure of Theorem 1.
Remark 3.—For the paradox of ½n; jαj; jβj� scenario, one

can have its corresponding generalized Hardy’s inequality
as

I ½n; jαj; jβj; x; y�
¼ Fðn; α; β; x; yÞpðaInÞ
− x

X
α

pðbαaᾱÞ − y
X
β

pðb̄βaβ̄Þ ≤ 0; ð3Þ

with x > 0, y > 0. Usually for convenience, one can
choose x, y as positive integers, and to make the inequality
meaningful (i.e., it can possibly be violated by quantum
states), one needs to require Fðα; β; x; yÞ > 0. By direct
computation, one can determine

Fðn; α; β; x; yÞ ¼ min
0≤m≤n

�
x

�
m
jαj

�
þ y

�
n −m
jβj

��
;

3 4 5 6 7 8 9 10
n0.00

0.05

0.10

0.15

0.20

0.25
Pn

Standard

General

FIG. 1. The success probability Pn versus particle number n
ðn ≥ 3Þ. The blue points correspond to PG

n in the generalized
Hardy’s paradox (with jαj ¼ jβj ¼ even number), and the purple
points correspond to PS

n in the standard Hardy’s paradox (with
jαj ¼ n, jβj ¼ 1). The relation PG

n > PS
n implies that there is

always a stronger paradox in comparison to the standard Hardy’s
paradox for n ≥ 3. Especially, in the [3;2,2] scenario, we have
PG
3 ¼ 1=4, which is twice PS

3 ¼ 1=8. Thus, it is feasible to
observe the stronger quantum paradox in a three-qubit system.
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which is the largest integer that the inequality still
holds, and ðmkÞ ¼ ½m!=k!ðm − kÞ!� is the binomial coeffi-
cient. For x ¼ y ¼ 1, jβj ¼ 1, one has the coefficient as
Fðα; β; 1; 1Þ ¼ n − jαj þ 1. For x ¼ y ¼ 1, the family of
the generalized Hardy’s inequalities is particularly interest-
ing, one may have that:
(i) The standard n-qubit Hardy’s inequality corresponds

to I ½n; jαj ¼ n; jβj ¼ 1; x ¼ 1; y ¼ 1�, which is a family of
tight Bell’s inequalities; the 22nd Sliwa’s inequality [40]
corresponds to I ½n ¼ 3; jαj ¼ 2; jβj ¼ 1; x ¼ 1; y ¼ 1�,
which is a tight Bell’s inequality; also, numerical compu-
tation shows that the family of n-qubit Bell’s inequalities
I ½n; jαj; jβj ¼ 1; x ¼ 1; y ¼ 1� is tight [41];
(ii) Based on the visibility criterion, for n ≥ 4, the

generalized Hardy’s inequalities can resist more white-noise
than the standard Hardy’s inequality. For a given n-qubit
entangled state ρ, we can mix it with the white noise
Inoise ¼ 1⊗n=2n, the resultant density matrix is given by
ρV ¼ Vρþ ð1 − VÞInoise. Resistance to noise can be mea-
sured through the threshold visibilityV thr, belowwhichBell’s
inequality cannot be violated. A lower threshold visibility
means that the quantum state can tolerate a greater amount of
noise. Let us consider ρ as the n-qubit GHZ state. In Table I,
we compare the threshold visibility of thegeneralizedHardy’s
inequalities and that of the standard Hardy’s inequality. We
find that, for n ≥ 4, the generalized Hardy’s inequalities can
provide lower visibilities than the standard one.
Experimental proposal to observe the stronger paradox

with three qubits.—A number of experimental tests of the
two-qubit Hardys paradox have been carried out since 1993
[5–13]. The maximal success probability for the two-qubit
Hardy’s paradox is ð5 ffiffiffi

5
p

− 11Þ=2≃ 9%, which does not
occur for the maximally entangled state [3,14]. For the
three-qubit standard Hardy’s paradox, the success proba-
bility is given by PS

3 ¼ 1=8 ¼ 0.125, which occurs for the
GHZ state. To our knowledge, such an experiment has not
yet been demonstrated. The higher the success probability,
the more friendly the experimental observation. Here, we
present an experimental proposal to observe a stronger
paradox in the ½n ¼ 3; jαj ¼ 2; jβj ¼ 2� scenario, whose
success probability is PG

3 ¼ 1=4 ¼ 0.25. In the experiment,

the resource is prepared as the three-qubit GHZ state
jΨiGHZ ¼ ðj000i þ j111iÞ= ffiffiffi

2
p

, and three qubits are sent
to three observers Alice, Bob, and Charlie separately (see,
also, Fig. S1 in [37] for an illustrative setup). Quantum
mechanically, the three observers will all perform the same
measurements in the x̂- and ŷ-direction, respectively, i.e.,

â1 ¼ â2 ¼ â3 ¼ j þ xihþxj;
b̂1 ¼ b̂2 ¼ b̂3 ¼ j þ yihþyj;

with ¯̂bj ¼ 1 − b̂j ¼ j − yih−yj, (j ¼ 1, 2, 3), 1 is the 2 × 2

unit matrix, and j þ xi ¼ ð1= ffiffiffi
2

p Þðj0i þ j1iÞ, j � yi ¼
ð1= ffiffiffi

2
p Þðj0i � ij1iÞ.
First, one needs to experimentally verify the zero-

probability conditions, i.e.,

pðb̂1b̂2â3Þ ¼ pðb̂1â2b̂3Þ ¼ pðâ1b̂2b̂3Þ
¼ pð ¯̂b1 ¯̂b2â3Þ ¼ pð ¯̂b1â2 ¯̂b3Þ ¼ pðâ1 ¯̂b2 ¯̂b3Þ ¼ 0;

ð4Þ

with pðb̂1b̂2â3Þ ¼ tr½ρðb̂1 ⊗ b̂2 ⊗ â3Þ�, etc., and ρ stands
for the GHZ state. Equations (4) are automatically satisfied
in quantum theory. Second, one will experimentally mea-
sure the success probability, i.e., the last one in Theorem 1,
whose theoretical quantum prediction is given by

pðâ1â2â3Þ ¼ tr½ρðâ1 ⊗ â2 ⊗ â3Þ� ¼
1

4
: ð5Þ

Taking into account experimental errors due to environ-
ment noise such that the six probabilities in (4) are not
exactly zeros by measurements, let us denote the conditions

as pðb̂1b̂2â3Þ ¼ pðb̂1â2b̂3Þ ¼ pðâ1b̂2b̂3Þ ¼ pð ¯̂b1 ¯̂b2â3Þ ¼
pð ¯̂b1â2 ¯̂b3Þ ¼ pðâ1 ¯̂b2 ˆ̄b3Þ ¼ ϵ. With the aid of the
inequality I ½3; 2; 2; 1; 1� ¼ a1a2a3 − b1b2a3 − b1a2b3−
a1b2b3 − b̄1b̄2a3 − b̄1a2b̄3 − a1b̄2b̄3 ≤ 0, if one can
observe the violation, then he must have 1=4 − 6ϵ > 0.
Thus, the maximal tolerance of measurement error
is ϵ < 1=24 ≈ 0.041.

TABLE I. Numerical results of threshold visibility V thr½n; jαj; jβj; 1; 1� for violations of inequality I ½n; jαj; jβj; 1; 1� ≤ 0 by the n-qubit
GHZ states. The boxed number represents the lowest visibility for each n. For n ≥ 4, the generalized Hardy’s inequalities can provide
lower visibility than the standard one (which corresponds to jαj ¼ n, jβj ¼ 1). For jαj ¼ jβj ¼ q, (q is even, 2q ≤ nþ 1), one may have
the analytical expression V thr½n; q; q; 1; 1� ¼ (2ðn=qÞ − ½ðn=2Þ=q� − f½n − ðn=2Þ�=qg)=(2ðn=qÞ þ ½ðn=2Þ=q� þ f½n − ðn=2Þ�=qg). For
q ¼ 2, we have V thr½n; 2; 2; 1; 1� ¼ f3½ðnþ 1Þ=2� − 1=5½ðnþ 1Þ=2� − 3g. It can be proved that, for the case of x ¼ y ¼ 1, for GHZ
states with n ≥ 5, the relation jαj ¼ jβj ¼ 2 is the best choice for generalized Hardy’s inequality [37].

n 3 4 5 6 7 8 9 10

jαj ¼ n, jβj ¼ 1 0.681250 0.707107 0.737431 0.764501 0.787467 0.806795 0.823130 0.837049
jαj ¼ 2, jβj ¼ 1 0.682242 0.703526 0.730699 0.755929 0.777878 0.796691 0.812819 0.826718
jαj ¼ n − 1, jβj ¼ 1 0.682242 0.671442 0.702481 0.734966 0.763073 0.786584 0.806221 0.822742
jαj ¼ 2, jβj ¼ 2 0.714286 0.714286 0.666667 0.666667 0.647059 0.647059 0.636364 0.636364
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Conclusions and discussion.—While Hardy’s paradox
and Hardy’s inequality have been generalized to arbitrary n
qubits by Cereceda, we have found that Cereceda’s way of
extension is not the unique one. In this Letter, we have
presented the most general framework for the n-particle
Hardy’s paradox and Hardy’s inequality. For n ≥ 3 the
generalized paradox may possess higher success proba-
bility and, thus, is stronger than the standard Hardy’s
paradox. For GHZ states with n ≥ 3, jαj ¼ jβj ¼
even number is the best choice for generalized Hardy’s
paradoxes. For n ≥ 4, the generalized Hardy’s inequalities
resist more noise than the standard Hardy’s inequality (one
can also adopt the generalized Hardy’s inequality to prove
Gisin’s theorem, which we shall discuss elsewhere).
Particularly in consideration of Table I and [37], our result
shows that for GHZ states with n ≥ 5, the relation jαj ¼
jβj ¼ 2 is the best choice for generalized Hardy’s inequality
I ½n; jαj; jβj; x ¼ 1; y ¼ 1� ≤ 0. Moreover, in the three-
qubit system, we have also designed a feasible experiment
proposal to observe the stronger quantum paradox. In our
opinion, the results here advance the study of Bell’s
nonlocality both with and without inequality. We anticipate
experimental work in this direction in the near future.
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