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Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous
curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the
interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood.
Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show
how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping
instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on
geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This
formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing
scaling predictions for the instabilities that are in excellent agreement with experiments and simulations.
Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells.
We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of
residual membrane and bending stresses. The prominent role of geometry in our findings suggests the
applicability of the results over a wide range of scales.
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Owing to their slender geometry, thin elastic shells display
intriguing mechanical instabilities. Perhaps the most iconic
example is the buckling of a spherical shell under pressure—a
catastrophic situation that often leads to structural failure [1,2].
Instabilities and shape changes are also fundamental during
the development and morphogenesis of thin tissue [3,4]. To
control and evolve shape, nature heavily relies on internal
stimuli such as growth, swelling, or active stresses [5,6]. If the
stimulus varies through the thickness of the shell, it generally
induces a change of the spontaneous (or natural) curvature of
the tissue [7]. Examples are the ventral furrow formation in
Drosophila [8] or the fast closure mechanism invoked by the
Venus fly trap to catch prey [9]. Harnessing similar concepts
for technological applications, internal stimuli were also
suggested as a means to design adaptive metamaterials [10]
and soft robotics actuators [11]. To describe the mechanics of
slender structures with arbitrary stimuli, classical shell
mechanics was extended recently to model bodies that do
not possess a stress-free configuration [12–14], leading to the
non-Euclidean shell theory [15]. Despite recent progress
[16,17], the role of curvature-altering stimuli, and their
interplay with geometric frustration and instabilities in thin,
initially curved shells, remains poorly understood.
In this Letter, we combine precision experiments with

non-Euclidean shell theory to reveal how curvature stimuli
induce mechanical instabilities in spherical shells. Our
experiments demonstrate symmetry-breaking as well as
snap-through shape transitions depending on the amount of
stimulus and the deepness of the shell. To rationalize our
findings, we show that a curvature stimulus reduces to a

pressurelike normal force in the bulk, but induces a torque
along the boundary of the shell. A scaling analysis of the
dominant boundary term allows us to construct an ana-
lytical phase diagram that captures well the transitions
found in experiments and simulations. For closed spherical
shells, we show that the pressurelike stimulus induces a
curvature-controlled buckling instability. The critical
stimulus is obtained from stability analysis and found to
be in the range of related biological systems.
In our experiments, we uniformly coated a rigid

sphere (radii R ∈ ½12; 75� mm) with silicone-based vinyl-
polysiloxane (VPS) 32 (Zhermack), such that it thermally
cross-links into an elastomeric shell [18]. We then repeated
the coating process with VPS 8, and cut shells with opening
angles θ ∈ ½20; 150�°, resulting in bilayer shells of thick-
nesses h ∈ ½0.5; 1.3� mm. Because of differential swelling
between the two polymer layers, internal stresses develop.
We quantify this geometric frustration by cutting a long,
narrow strip from the shell. Free of any constraints, the strip
adopts a shape with curvature κ̄, which can be additively
decomposed into the initial curvature −1=R and natural
curvature κ. Thus, κ ¼ κ̄ þ 1=R measures the curvature
stimulus [Fig. 1(a)] [17,19]. Specifically, for a bilayer with
VPS 8 on the outside, we find κ > 0, and by switching the
order of the layers, we can induce a negative natural
curvature (κ < 0). To characterize the various geometries,
we introduce the dimensionless parameter θ̄ ¼ θ=

ffiffiffiffiffiffiffiffiffi
h=R

p
,

describing the deepness of the shell with respect to the
angular width of the boundary layer

ffiffiffiffiffiffiffiffiffi
h=R

p
[20].
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For shells with κ < 0, we find that the stimulus leads to a
loss of rotational symmetry via a supercritical buckling
bifurcation [Fig. 1(c)] [3]. Experiments suggest no strong
dependence of this transition on θ̄. For κ > 0, the stimulus
acts to evert the initial curvature of the shell. Above a
critical stimulus, we observe a snap-through instability
[Fig. 1(d)], reminiscent of the abrupt concave-convex shape
changes employed by the Venus fly trap [9], and the
embryonic inversion of Volvox [21]. Here, the critical
curvature stimulus increases with θ̄. Moreover, shallow
shells with θ̄ < θ̄s ≈ 2 do not snap, whereas shells with
θ̄ < θ̄c ≈ 4 remain rotationally symmetric after snapping,
while deep ones break the rotational symmetry during snap
through (Fig. 2).
To explain the richness of the experimental findings, we

rely on non-Euclidean shell theory, which has recently been
proposed as a model for growth in thin, bidimensional
bodies [15]. In this formulation, the mechanics of the shell
is entirely described by the geometry of the middle surface
with first and second fundamental forms a, b [22].
The undeformed reference configuration in absence of
curvature stimulus is characterized by å, b̊, respectively.
Curvature stimuli are modeled by changing the reference
configuration to effectively generate stresses and moments
arising from differential swelling of the shell layers [23].
The resulting natural configuration has fundamental forms
ā, b̄ and is generally not embeddable in Euclidean space.

When the stimulus does not induce a stretch of the
midsurface (ā ¼ å), one obtains b̄ ¼ b̊þ κå, where κ is
the scalar (additive) natural curvature [23]. The energy of
the shell may be written after some algebra as [24]

Ū ¼ ŪK
s þ h2

3
ŪK
b −

2ð1þ νÞh2
3

Z
κ trðb − b̊Þdω: ð1Þ

Here, ŪK ¼ ŪK
s þ h2ŪK

b =3 is Koiter’s classical shell
energy composed of stretching and bending terms without
any inelastic stimuli [24,29], ν is the Poisson ratio (ν ¼ 1=2
for VPS), and dω is the area element [30]. Owing to the
additive decomposition, we can interpret the last term
in (1) as the stimulus-induced curvature potential Pκ ¼
−2ð1þ νÞh2=3 R κ trðb − b̊Þdω. The surprisingly simple
additive effect of natural curvature allows for a relatively
straightforward extension of thin shells simulation
methods to minimize (1) for a given stimulus κ. Indeed,
by numerically minimizing Eq. (1), we find good quanti-
tative agreement with the experimental shapes and the
stimulus-induced transitions [Figs. 1(c) and 1(d)]. This
suggests that the reduced-order model (1) is adequate to
describe thin shells with curvature stimuli.
To theoretically understand how natural curvature inter-

acts with the geometry and triggers the observed insta-
bilities, we analyze the curvature potential and provide its
geometrical interpretation. We start by expanding trðb − b̊Þ
in terms of the displacement field Ψ up to first order [20].
Assuming a homogeneous natural curvature stimulus κ,
the curvature potential decouples into bulk and boundary
terms, Pκ ¼ −Wbulk −Wedge [24]. For a sphere with out-
ward pointing normal, they read

Wbulk ¼ −
4ð1þ νÞ

3

�
h
R

�
2

κ

Z
Ψ3dω; ð2aÞ

Wedge ¼
2ð1þ νÞ

3
h2κ

I �
q −

Ψ̌
R

�
· tds; ð2bÞ

where Ψ3 is the normal displacement, Ψ̌ is the in-plane
displacement field, and t is the outward normal vector
to the boundary curve. The expression q ¼ ∇Ψ3 − Ψ̌=R
represents the rotation of an element of the shell [20], such
that q · t is the rotation of t [Fig. 1(b)]. The integral in (2a)
is equivalent to the first-order energy of a pressure load. In
the bulk, a curvature stimulus is therefore equivalent to an
effective applied pressure. In (2a), κ is the work conjugate
of the rotation q · t and the membrane in-plane displace-
ment Ψ̌ · t, implying both a torquelike and membrane
forcelike behavior. Specifically, for κ > 0, Eq. (2a)
describes an outward torque at the boundary [Fig. 1(b)].
A similar interpretation holds for arbitrary open shells [24].
Numerically, we find that jWedgej ≫ jWbulkj for thin

shells of all considered opening angles θ. We can ration-
alize this by considering small displacements. The Koiter

(a) (b)

(c) (d)

FIG. 1. (a) Schematic of a VPS bilayer shell with natural radius
of curvature 1=ð−1=Rþ κÞ induced by residual swelling. (b) The
natural curvature mechanically corresponds to torques on the
boundary and a pressure field in the bulk. (c) Buckling of open
spherical shells triggered by κ < 0 (left, experiments; right,
simulations). (d) Snapping of open spherical shells triggered
by κ > 0 for θ̄ ¼ 5. Scale bars 2 cm.
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elastic energy then scales as ŪK ∼ ðΨ3=RÞ2R2, while the
curvature potential scales as Pκ ∼ h2κðΨ3=R2ÞR2 in the
bulk. A balance of the two leads to Ψ3 ∼ h2κ. As the area
of the shell is proportional to R2ð1 − cos θÞ, the bulk
work (2a) scales as Wbulk ∼ h4κ2ð1 − cos θÞ. Then, as
the boundary layer is bending dominated [31], we obtain
jq − Ψ̌=Rj ∼ κ

ffiffiffiffiffiffi
Rh

p
[24], where

ffiffiffiffiffiffi
Rh

p
is the characteristic

width of the boundary layer [20]. As the perimeter of the
boundary is proportional to R sin θ, we conclude that the
edge work (2a) scales as Wedge ∼ h4κ2ðR=hÞ3=2 sin θ. By a
comparison of the two scalings, we find jWedge=Wbulkj∼
ðR=hÞ3=2= tanðθ=2Þ ≫ 1; i.e., the boundary work domi-
nates for the opening angles θ considered. Therefore, the
boundary term dictates the observed shape transitions.
In experiments, we observe that snapping is indeed

accompanied by minimal bulk deformation, but large
rotation of the boundary. Moreover, we find that snap-
through instabilities occur for open shells with θ ≤ π=2
when their tangent plane on the boundary becomes approx-
imately horizontal (see the videos in the Supplemental
Material [24]). In this state, the critical curvature within
the boundary layer scales as bc ∼ ð1þ νÞð−1=Rþ κÞ [24].
Since thewidth of the boundary layer scales as

ffiffiffiffiffiffi
Rh

p
,bcmust

also scale as ∼θ=
ffiffiffiffiffiffi
Rh

p
. Thus we find the critical curvature

stimulus at snapping κsR ∼ θ̄, that is

κsR ¼ βθ̄ − α; ð3Þ
leaving two scaling coefficients α and β to be determined
later. For θ̄ → 0, shells tend to plates. Flat plates of radius r
under curvature stimuli bifurcate at ~κph ¼ �aðh=rÞ2 with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 7

ffiffiffi
2

pp
[17]. Then, for large R and small θ, but

r ¼ Rθ finite, shells are expected to behave like plates if
we identify ~κpR ¼ κpR − 1; i.e., we compensate for the
initial curvature −1=R. Therefore, shells will bifurcate at
κpR ¼ �a=θ̄2 þ 1, and we expect a symmetric bifurcation
behavior around κR ¼ 1. Without loss of generality, we
consider the case κ < 0, corresponding to the buckling of
shells into spindlelike shapes. We define the critical curva-
ture stimulus by κb, and now consider the behavior of deep
shells. We note that for θ → π, the natural curvature will
expend a torquelike work on a boundary whose perimeter
approaches zero as sin θ, while the area of the shell to be
deformed increases as ð1 − cos θÞ. The critical natural
curvature will then diverge as κbR ∼ tanðθ=2Þ ∼ 1=
ðθ − πÞ, that is, 1=ðθ̄ − π

ffiffiffiffiffiffiffiffiffi
R=h

p Þ. We conjecture that the
curvature buckling of shells can be determined by combin-
ing the two diverging regimes for small and large θ̄ as

κbR ¼ −
a

θ̄2
þ 1þ b

θ̄ − π
ffiffiffiffiffiffiffiffiffi
R=h

p þ c; ð4Þ

where awas given above, and b and c have to be determined
by fitting to simulations. Notice that the superposition of

the two scalings retains the correct asymptotic behaviors as
θ̄ → 0 and θ̄ → π

ffiffiffiffiffiffiffiffiffi
R=h

p
.

Our theoretical scaling predictions can be summarized in
a phase diagram (solid lines in Fig. 2) in the parameters
ðθ̄; κRÞ, which fully characterize the curvature-induced
instabilities of open shells. For κ < 0, the scaling law
(4) with b ¼ 3.6 and c ¼ −0.98 provides the best fit with
numerics, and agrees well with experiments. We note that a
parameter-free determination of the buckling threshold
would require a linear stability analysis, which is hampered
due to the nontrivial fundamental state before buckling. For
κ > 0, the behavior is richer: there are two phases of
inverted curvature, one with broken rotational symmetry
(blue region) and another phase that is rotationally sym-
metric (green). Simulations confirm the snapping transition
(3) with α ¼ 0.67 and β ¼ 0.85, but only if θ̄ > θ̄s ¼ 2.09,
in agreement with experiments. For θ̄ < θ̄s, we find that
shells smoothly invert their curvature into the green phase
as κ increases. This can be understood by considering a
family of shells with a fixed h=R, and different θ. Since the
width of the boundary layer scales as

ffiffiffiffiffiffi
Rh

p
, shallower shells

possess a boundary layer that covers a larger portion of the
area compared to deeper shells. Thus, there exists a critical
value θ̄s below which the boundary layer transitions into a
wide region that covers the entire shell. As regions within
the boundary layer are bending-dominated, the curvature of
the shell smoothly follows the evolution of the spontaneous
curvature for θ̄ < θ̄s. Starting from the green phase, rota-
tional symmetry is eventually lost for large κR. The

FIG. 2. Phase diagram of curvature-induced instabilities in
open shells: white and green regions denote phases with rota-
tional symmetry but opposite surface orientations, whereas blue
regions denote phases of broken rotational symmetry. Theoretical
transitions curves (solid lines) match well with experimental
(colored full symbols) and numerical (colored empty symbols)
findings, where color represents h=R.
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transition line is well described by mirroring Eq. (4) around
the axis of symmetry κR ¼ 1, as expected from the plate
limit (dashed gray line), without any changes of the
parameters b and c. At θ̄c, this transition line intersects
with Eq. (3), and a triple point emerges. Explicitly,
the triple point is determined from −κs þ 2=R ¼ κb,
which gives θ̄c ¼ 3.85, in agreement with experiments
(θ̄c ¼ 3.95� 0.26). Consequently, shells snap into a rota-
tionally symmetric phase only if θ̄s < θ̄ < θ̄c, whereas for
θ̄ > θ̄c shells immediately snap into an everted state of
broken rotational symmetry (blue region). (Thin shells are
unlikely to snap into cylindrical shapes [32]. However, we
would expect the deformed shells have a small, nonzero
curvature along one principal direction, corresponding to a
near-isometric deformation with minimum energy.)
In contrast to open shells, only the bulk contribution

remains for closed shells. Exploiting its analogy with
pressure, we expect instabilities similar to the classical
pressure-induced buckling of spherical shells [29,33–36].
More precisely, the bulk term is formally equivalent to
the work done by an external (dead) pressure, Wp ¼
−8ð1 − ν2Þp=ðEhÞ R Ψ3dω [2], allowing us to define an
effective stimulus-induced pressure p via

κh ¼ 6ð1 − νÞ
�
R
h

�
2 p
E
; ð5Þ

where E is the Young’s modulus of the shell. Following this
interpretation, a negative stimulus, κ < 0, corresponds to a
negative external pressure, p < 0, thus causing an inflation
of the shell. Conversely, a positive stimulus with κ > 0 is
equivalent to positive external pressure and results in a
compression of the sphere. By expanding the bending and
stretching strains up to the first order in the displacement
[20], and solving the Euler-Lagrange equations associated
to (1), we find for the normal displacement Ψ3=h ¼
−κh=12þO(ðh=RÞ4) while the in-plane displacement is
zero for symmetry. Having established the analogy to
classical shell buckling [37,38], we expect a critical
stimulus beyond which the shell will buckle in absence
of any external load. It is tempting to identify the buckling
natural curvature κb via (5) with the critical buckling
pressure pb ¼ 2E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − ν2Þ

p
ðh=RÞ2 obtained for the

classical pressure buckling of spherical shells [37].
However, despite the formal analogy, pressure buckling
and curvature buckling are triggered by fundamentally
different residual stress states: while the residual stress in
pressure-compressed shells is mainly of the membrane (in-
plane) type, the prestress in curvature-compressed shells is
a combination of membrane and bending stresses due to
the evolving natural curvature that modifies the rest lengths
of the body above and below the midsurface. A careful
analysis then yields the critical buckling stimulus as

κbh ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1 − ν

ð1þ νÞð5þ 4νÞ

s
; ð6Þ

which for an incompressible material reduces to κbh ¼
4=

ffiffiffi
7

p
[24]. This is a large value, corresponding to a radius

of natural curvature equal to two thirds of the thickness (via
residual swelling we are experimentally limited to values of
jκhj < 1=4), yet it is comparable to natural curvatures
observed during the eversion of the Volvox for which κh≃
2 [21]. In contrast to open shells, where the characteristic
curvature for snapping and buckling is 1=R due to the
existence of nearly isometric deformations, the character-
istic curvature in closed shells becomes 1=h. To validate
the buckling threshold, we performed simulations to
minimize Eq. (1) using closed spheres for different values
of thicknesses and radii such that h=R ∈ ½0.001; 0.1�.
Measuring Ψ3=h as we vary κ, we confirm the behavior
of Ψ3=h ¼ −κh=12 before buckling [39], as well as the
predicted critical curvature κbh in Eq. (6) (Fig. 3). We note
that, after buckling, the shell becomes unstable as the
bifurcation is subcritical. To track the lowest-energy unsta-
ble branch in Fig. 3, we therefore minimized Eq. (1) using
arc-length continuation while enforcing rotational sym-
metry (solid blue and red lines in Fig. 3). The postbuckling
regime does not vary considerably with h=R and is similar
to that observed in the pressure buckling of shells (insets
in Fig. 3) [40].
In summary, we presented a theoretical and experimental

study of curvature-induced instabilities in open and closed
shells. Our theoretical analysis reveals that natural curva-
ture can be interpreted as a combination of pressure and
torque, and enables analytical predictions for instabilities in
open and closed shells. We note that the critical stimuli in

FIG. 3. Curvature buckling of a closed shell. As the stimulus
κ=κb increases, the normal displacement at the north pole Ψ3=h
decreases linearly as predicted by theory. At κ ¼ κb, buckling
occurs and the shell becomes unstable. The solid black line
represents theory, while the solid blue and red lines represent
simulations for h=R ¼ 0.001, 0.1, respectively. Axisymmetric
profiles and 3D shapes from simulations are shown in the insets.
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open and closed shells could also be determined via the
method for nonlinear deformations presented in [13], and a
formal comparison should be investigated in future work.
We believe our study is a valuable contribution towards the
generic understanding of curvature-driven instabilities in
thin curved shells, as it generalizes previous experiments
on plates [17] and elastica with a natural curvature [41].
Because of current limitations of the coating setup [18], we
hope that our study will motivate experiments on more
general surfaces, e.g., via the application of advanced 3D
printing techniques [42]. For simple geometries, the pre-
sented experimental setup is extensible to nonhomogenous
stimuli by local patterning of the individual layers. We
hypothesize that, in the bulk, such stimuli remain at lowest
order equivalent to normal forces, simplifying future
theoretical analysis considerably. Lastly, the demonstrated
precise control of shapes by means of natural curvature
stimuli is scale invariant, and thus presents novel means
towards the design of self-folding and deployable structures
as well as instability-driven actuators in soft robotics
applications across different length scales.
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support from the National Science Foundation Grant
No. CMMI–1505125.

*dpholmes@bu.edu
[1] D. Bushnell and W. D. Bushnell, http://shellbuckling.com,

2017.
[2] W. T. Koiter, Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.

72, 40 (1969).
[3] E. Katifori, S. Alben, E. Cerda, D. R. Nelson, and J.

Dumais, Proc. Natl. Acad. Sci. U.S.A. 107, 7635 (2010).
[4] G. Lim H W, M. Wortis, and R. Mukhopadhyay, Proc. Natl.

Acad. Sci. U.S.A. 99, 16766 (2002).
[5] H. Liang and L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A.

108, 5516 (2011).
[6] T. Tallinen, J. Y. Chung, J. S. Biggins, and L. Mahadevan,

Proc. Natl. Acad. Sci. U.S.A. 111, 12667 (2014).
[7] A. Goriely, The Mathematics and Mechanics of Biological

Growth, Interdisciplinary Applied Mathematics Vol. 45
(Springer, New York, 2017).

[8] N. C. Heer, P. W. Miller, S. Chanet, N. Stoop, J. Dunkel, and
A. C. Martin, Development (Cambridge, U.K.) 144, 1876
(2017).

[9] Y. Forterre, J. M. Skotheim, J. Dumais, and L. Mahadevan,
Nature (London) 433, 421 (2005).

[10] D. P. Holmes and A. J. Crosby, Adv. Mater. 19, 3589 (2007).
[11] H. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, and X.

Zhao, Nat. Commun. 8, 14230 (2017).
[12] M. E. Gurtin, E. Fried, and L. Anand, The Mechanics and

Thermodynamics of Continua (Cambridge University Press,
Cambridge, England, 2010).

[13] M. B. Amar and A. Goriely, J. Mech. Phys. Solids 53, 2284
(2005).

[14] A. Goriely and M. Ben Amar, Phys. Rev. Lett. 94, 198103
(2005).

[15] E. Efrati, E. Sharon, and R. Kupferman, J. Mech. Phys.
Solids 57, 762 (2009).

[16] S. Armon, E. Efrati, R. Kupferman, and E. Sharon, Science
333, 1726 (2011).

[17] M. Pezzulla, G. P. Smith, P. Nardinocchi, and D. P. Holmes,
Soft Matter 12, 4435 (2016).

[18] A. Lee, P. T. Brun, J. Marthelot, G. Balestra, F. Gallaire, and
P. M. Reis, Nat. Commun. 7, 11155 (2016).

[19] M. Pezzulla, S. A. Shillig, P. Nardinocchi, and D. P. Holmes,
Soft Matter 11, 5812 (2015).

[20] F. Niordson, Shell Theory, North-Holland Series in Applied
Mathematics and Mechanics Vol. 29 (Elsevier Science,
New York, 1985).

[21] S. Höhn, A. R. Honerkamp-Smith, P. A. Haas, P. K. Trong,
and R. E. Goldstein, Phys. Rev. Lett. 114, 178101 (2015).

[22] B. O’Neill, Elementary Differential Geometry (Academic
Press, New York, 1997).

[23] M. Pezzulla, N. Stoop, X. Jiang, and D. P. Holmes, Proc. R.
Soc. A 473, 20170087 (2017).

[24] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.048002 for a de-
tailed derivation, which includes Refs. [25–28].

[25] M. Deserno, Notes on Differential Geometry, https://www
.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf (2004).

[26] F. Cirak and M. Ortiz, Int. J. Numer. Methods Eng. 51, 813
(2001).

[27] A. van der Neut, PhD thesis, Delft University of Technol-
ogy, H.J. Paris, Amsterdam, 1932.

[28] A. van der Heijden,W. T. Koiter’s Elastic Stability of Solids
and Structures (Cambridge University Press, Cambridge,
England, 2008).

[29] W. T. Koiter and J. G. Simmonds, in Theoretical and
Applied Mechanics: Proceedings of the 13th International
Congress of Theoretical and Applied Mechanics, Moskow
University, 1972, edited by E. Becker and G. K. Mikhailov
(Springer, Berlin, Heidelberg, 1973), pp. 150–176.

[30] J. Hanna, Bull. Am. Phys. Soc. 62 (2017).
[31] E. Efrati, E. Sharon, and R. Kupferman, Phys. Rev. E 80,

016602 (2009).
[32] A. M. Abdullah, P. V. Braun, and K. J. Hsia, Soft Matter 12,

6184 (2016).
[33] T. von Kármán and H. S. Tsien, J Aeronaut Sci 7, 43 (1939).
[34] H. S. Tsien, J Aeronaut Sci 9, 373 (1942).
[35] J. Thompson, Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.

67, 295 (1964).
[36] J. W. Hutchinson, J. Appl. Mech. 34, 49 (1967).
[37] R. Zoelly, Ph.D. thesis, ETH Zürich, 1915.
[38] W. T. Koiter, Ph.D. thesis, Delft University of Technology,

1945.
[39] It is an open question to test whether a neo-Hookean

material will be affected by limit point inflation instabilities
triggered by κ < 0.

[40] J. W. Hutchinson, Proc. R. Soc. A 472, 20160577 (2016).
[41] B. Audoly and Y. Pomeau, Elasticity and Geometry: From

Hair Curls to the Non-linear Response of Shells (Oxford
University Press, New York, 2010).

[42] Y. Mao, Z. Ding, C. Yuan, S. Ai, M. Isakov, J. Wu, T. Wang,
M. L. Dunn, and H. J. Qi, Sci. Rep. 6, 24761 (2016).

PHYSICAL REVIEW LETTERS 120, 048002 (2018)

048002-5

http://shellbuckling.com
http://shellbuckling.com
https://doi.org/10.1073/pnas.0911223107
https://doi.org/10.1073/pnas.202617299
https://doi.org/10.1073/pnas.202617299
https://doi.org/10.1073/pnas.1007808108
https://doi.org/10.1073/pnas.1007808108
https://doi.org/10.1073/pnas.1406015111
https://doi.org/10.1242/dev.146761
https://doi.org/10.1242/dev.146761
https://doi.org/10.1038/nature03185
https://doi.org/10.1002/adma.200700584
https://doi.org/10.1038/ncomms14230
https://doi.org/10.1016/j.jmps.2005.04.008
https://doi.org/10.1016/j.jmps.2005.04.008
https://doi.org/10.1103/PhysRevLett.94.198103
https://doi.org/10.1103/PhysRevLett.94.198103
https://doi.org/10.1016/j.jmps.2008.12.004
https://doi.org/10.1016/j.jmps.2008.12.004
https://doi.org/10.1126/science.1203874
https://doi.org/10.1126/science.1203874
https://doi.org/10.1039/C6SM00246C
https://doi.org/10.1038/ncomms11155
https://doi.org/10.1039/C5SM00863H
https://doi.org/10.1103/PhysRevLett.114.178101
https://doi.org/10.1098/rspa.2017.0087
https://doi.org/10.1098/rspa.2017.0087
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.048002
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://doi.org/10.1002/nme.182
https://doi.org/10.1002/nme.182
https://doi.org/10.1103/PhysRevE.80.016602
https://doi.org/10.1103/PhysRevE.80.016602
https://doi.org/10.1039/C6SM00532B
https://doi.org/10.1039/C6SM00532B
https://doi.org/10.2514/8.1019
https://doi.org/10.2514/8.10911
https://doi.org/10.1115/1.3607667
https://doi.org/10.1098/rspa.2016.0577
https://doi.org/10.1038/srep24761

