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The E ¼ 0 octet of bilayer graphene in the filling factor range of −4 < ν < 4 is a fertile playground for
many-body phenomena, yet a Landau level diagram is missing due to strong interactions and competing
quantum degrees of freedom. We combine measurements and modeling to construct an empirical and
quantitative spectrum. The single-particlelike diagram incorporates interaction effects effectively and
provides a unified framework to understand the occupation sequence, gap energies, and phase transitions
observed in the octet. It serves as a new starting point for more sophisticated calculations and experiments.
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Bilayer graphene provides a fascinating platform to
explore potentially new phenomena in the quantum Hall
regime of a two-dimensional electron gas (2DEG). The
existence of two spins, two valley indicesK andK0, and two
isospins corresponding to the n ¼ 0 and 1 orbital wave
functions results in an eightfold degeneracy of the single-
particle E ¼ 0 Landau level (LL) in a perpendicular mag-
netic field B [1,2]. This SU(8) phase space provides ample
opportunities for the emergence of broken-symmetry many-
body ground states [3–15]. The application of a transverse
electric field E drives valley polarization through their
respective occupancy of the two constituent layers [1,2].
Coulomb exchange interactions, on the other hand, enhance
spin ordering and promote isospin doublets [11,15,16]. As a
result of these intricate competitions, the E ¼ 0 octet of
bilayer graphene (integer filling factor range −4 < ν < 4)
exhibits a far richer phase diagram than their semiconductor
counterparts. Experiments have uncovered 4, 3, 2, and 1
coincidence points for filing factors ν ¼ 0,�1,�2, and�3,
respectively, where the crossing of two LLs leads to the
closing of the gap and signals the phase transition of the
ground state from one order to another [13,15–18]. Their
appearance provides key information to the energetics of the
LLs and the nature of the ground states involved. Indeed,
coincidence studies on semiconducting 2DEGs are used to
probe the magnetization of quantum Hall states [19] and
measure themany-body enhanced spin susceptibility [20]. In
bilayer graphene, the valley and isospin degrees of freedom
increase the number of potential many-body coherent
ground states. Furthermore, the impact of actively control-
ling these degrees of freedom became evident in the recent
observations of fractional and even-denominator fractional
quantum Hall effects [17,21–25].
A good starting point of exploring this rich landscape

would be a single-particle, or single-particlelike LL

diagram, upon which interaction effects can be elucidated
perturbatively. Indeed, even in the inherently strongly
interacting fractional quantum Hall effect, effective single-
particle models, e.g., the composite fermion model [26],
can capture the bulk of the interaction effects and provide
conceptually simple and elegant ways to understand com-
plex many-body phenomena. In bilayer graphene, a LL
diagram that provides a basis to interpret and reconcile the
large amount of experimental findings to date has yet to
emerge. Predictions of tight-binding models with Hartree-
Fock approximations [2,14,27–30] are not able to fully
account for experimental observations [16].
Here we have taken an empirical approach to construct

an effective single-particlelike LL diagram of bilayer
graphene subject to perpendicular magnetic and electric
fields. This effective LL diagram provides a unified
framework to interpret existing experiments. It can quanti-
tatively reproduce the observed coincidence conditions of
ν ¼ 0 and �1 and account for the widely varying literature
reports on the gap energies at ν ¼ �1, �2, and �3. The
diagram produces five filling sequences of the LLs from
ν ¼ −4 to þ4, in excellent agreement with experiment
[16]. An expression for the energy splitting between the
n ¼ 0 and 1 orbitals E10 is obtained.
All seven devices reported in this letter are dual

gated, with the bilayer sheet sandwiched between two
hexagonal boron nitride (h-BN) dielectric layers. The
fabrication procedures and characteristics of the devices
can be found in Sec. 1 of Ref. [31]. The first important
energy scale of our diagram is the perpendicular displace-
ment fieldD induced interlayer potential differenceΔðDÞ at
B ¼ 0. We determineΔðDÞ using thermally activated trans-
port measurements. For D < 800 mV=nm, ΔðDÞ is well
approximated by ΔðmeVÞ ¼ 0.13D ðmV=nmÞ (see Sec. 2
of Ref. [31]).
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When a perpendicular magnetic field B is applied, the
gapped bands of bilayer graphene evolve into discrete LLs.
In a two-band tight-binding model when D is large, the
ν ¼ 0 gap is approximately given by ΔðDÞ, which repre-
sents the energy splitting between the n ¼ 0 orbitals in K
and K0 valleys, i.e., between jþ; 0i and j−; 0i. The splitting
between the n ¼ 1 orbitals, i.e., jþ; 1i and j−; 1i, is slightly
smaller due to wave function distributions [2]. This model
predicts a LL sequence of jþ; 0i, jþ; 1i, j−; 1i, j−; 0i. The
effect of the electron-hole asymmetry, however, produces a
large positive correction to the energies of the j�; 1i states
and modifies the sequence to jþ; 1i, jþ; 0i, j−; 1i, j−; 0i
[14]. The correction E10ðmeVÞ¼E1−E0¼ðγ1γ4=γ0ÞB¼
0.48BðTÞ, where γ0, γ1, and γ4 are the Slonczewski-Weiss-
McClure hopping parameters [37], is much larger than the
bare Zeeman energy ΔzðmeVÞ ¼ 0.11B ðTÞ. Thus, spin
doublets, e.g., j0;↑i followed by j0;↓i, are favored in this
model [14]. The recent experimental observations of Hunt
et al., however, point to the formation of closely spaced orbital
doublets at large D [16]. Large exchange corrections pre-
sumably play an important role [16], although the effect of
trigonal warping has yet to be examined carefully [38].
Beyond tight-bindingmodels,many-bodyeffects are expected
to modify the LL gap energies with terms linear in B [10,11].
Starting from the prior knowledge, we have constructed

an effective single-particlelike LL diagram of bilayer
graphene, which is shown in Fig. 1(a). Three energy scales
are introduced. We postulate that the valley gap Δv (D, B)
between the jþ; 0i and j−; 1i states takes on the form of
ΔvðD;BÞ ¼ ΔðDÞ þ αB and the exchange-enhanced spin
gap Δs (B) between states of opposite spin polarizations
takes on the form of ΔsðBÞ ¼ βB. The magnitude and
functional form of E10 (D, B), which yields the gaps at
ν ¼ �1 and �3, is to be determined by experiments. The
filling sequence in the large D limit is fixed by experiments
[16]. The gap at ν ¼ 0 is given by Δ0 ≈ jΔvðD;BÞ −
ΔsðBÞj and transitions from a valley gap at large D to a
spin gap at small D, which is generally consistent with
experimental findings, although the spin polarized ground
state of ν ¼ 0 only appears in a large in-plane magnetic
field [9,11,13]. From large D to small D, the gap of ν ¼ 0
closes twice, at D�

h and D�
l , respectively. The larger D�

h
corresponds to Eþ;0;↓ ¼ ½Δν −½Δs þ½E10 ¼ E−;1;↑ ¼
−½Δν þ½Δs þ½E10, i.e., ΔvðD�

hÞ ¼ ΔsðBÞ or ΔðD�
hÞ ¼

ðβ − αÞB, while a smaller D�
l corresponds to Eþ;1;↓ ¼

½Δν − ½Δs þ3=2E10 ¼ E−;0;↑ ¼ −½Δν þ ½Δs − ½E10,
i.e., ΔðD�

l Þ þ 2E10ðD�
l ; BÞ ¼ ðβ − αÞB [39]. They are dis-

tinguishable so long as E10 can be resolved experimentally.
Figures 1(b)–1(d) present our measurements of D�

h
and D�

l for ν ¼ 0. Figure 1(b) shows a colored map of
magnetoresistance Rxx as a function of the top and bottom
gate voltages V tg and Vbg in device 06 at B ¼ 8.9 T. Lines
corresponding to constant filling factors ν ¼ 0, �1, and
D ¼ 0 are marked on the plot. We sweep the top and
bottom gates in a synchronized fashion to follow a line of

constant ν and measure Rxx (D). Similar to previous
studies, a dip (peak) in Rxx (D) is identified as the
coincidence field D�

0 (D�
�1) for ν ¼ 0 (�1) [13,16–18].

D� is symmetric about zero and the positive D�
0;�1 is

marked in Fig. 1(a). In Fig. 1(c), we plot a few examples of
Rxx (D) at fixed B fields from 10 to 16 T in device 24.
A double-dip structure starts to appear at B ∼ 12 T and the
difference between D�

h and D�
l rapidly increases with B.

Higher field data up to 31 T obtained on device 06 are
shown in Fig. 1(d).
Figure 2(a) summarizes results of D�, D�

h, and D�
l

obtained from four devices. Above B ∼7 T, D�
h (D� at

low field) exhibits a remarkably linear dependence on B,
with a slope of 8.3 mV=nm=T. (Considerable deviation
of D� from the line is observed at B < 5 T and is not
discussed in this work.) Both the linear trend and the slope
are in good agreement with measurements obtained by
other groups on h-BN encapsulated bilayers [13,16–18].
The linear dependence of D�

h (B), together with
ΔðDÞ ¼ 0.13D, leads to β − α ¼ 1.1 meV=T.
The appearance of D�

l at B > 12 T enables us to
determine the magnitude of E10 (D, B). Figure 2(b) plots
E10 obtained from devices 06 and 24. E10 increases rapidly

(c)

(d)

(a)

(b)

FIG. 1. (a) An effective LL diagram for the E ¼ 0 octet of
bilayer graphene at a fixed magnetic field. Red, orange, blue,
and cyan colors denote jþ; 0i, jþ; 1i, j−; 0i, and j−; 1i states,
respectively, following the color scheme of Ref. [16]. Illustrated
are four scenarios corresponding to large D, the coincidence
fields D�

h and D�
l of ν ¼ 0 and small D. (b) A color map of Rxx

(V tg, Vbg) in device 6 at B ¼ 8.9 T. Dashed lines mark the
constant filling factors ν ¼ 0,�1, andD ¼ 0. The arrow points to
the positive coincidence fields of ν ¼ 0, �1. They are not
distinguishable at this field. Disturbance observed in the range
of 0 < Vbg < 0.4 V is due to contact problems. (c),(d) Rxx (D)
obtained at ν ¼ 0 at selected B fields from 10–16 T in device 24
(c) and at B ¼ 25 and 31 T in device 6 (d). The dashed lines are
guides to the eye for D�

h and D�
l . Both are symmetric about zero.

Only one direction is shown for each device.
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from 0.2 meVatD ¼ 96 mV=nm (B ¼ 12 T) to 6.0 meVat
D ¼ 167 mV=nm (B ¼ 31 T). The coincidence studies
alone are not sufficient to determine the role of the electric
and magnetic fields independently in E10. Since the ν ¼ 1
gap is given by E10 and has been shown to be approx-
imately linear in B in the literature [22,40–42], we further
assume that E10 ðD;BÞ=B is a pure function of D and its
functional form can then be obtained from data, as shown in
Fig. 2(c). E10=B is a strongly nonlinear function of D and
only rises sharply after a large threshold of D field is
reached. We obtain E10=B ¼ 0.058ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðmV=nmÞp − 9.43Þ
in the regime of D ≥ 96 mV=nm, with the choice of the
ffiffiffiffi

D
p

form motivated by the linear fit obtained.
The knowledge of E10 (D, B) sheds considerable light

on the widely varying reports of the LL gap energies in the
literature [15,18,22,40–42]. In Fig. 3(a), we compare the
systematic measurements of Kou et al. [22] with calcu-
lations produced by our effective model. In the singly gated
sample used in Ref. [22], the D field grows with carrier
density n, which translates into a filling factor-dependent
quantity DðνÞ ¼ 2.2νB ðmV=nmÞ. In addition, the sample
may have unintentional chemical doping, the compensation
of which results in a finite D0 at ν ¼ 0. Together, the
sample experiences D ¼ D0 þ 2.2νB. The large band gap
of ∼25 meV at B ¼ 0 observed in Ref. [22] suggests a
large D0. As shown in Fig. 3(a), with a single fitting
parameter of D0 ¼ 220 mV=nm, our calculated Δν’s can
capture the size and order of the measurements at ν ¼ �1
and �3 very well, attesting to the strength of our model.
Moreover, values of β ¼ 1.7–2.1 meV=T put the calculated
gaps of ν ¼ �2 in the vicinity of the measured data. Here,
the measurements show a larger asymmetry between
ν ¼ þ2 and −2 than our simulations would suggest.

One possibility of this discrepancy can be due to the
different many-body screening at ν ¼ þ2 and −2, which
requires more sophisticated calculation to capture.
An estimated β ¼ 1.7 meV=T, together with β − α ¼

1.1 meV=T obtained earlier, leads to an α ¼ 0.6 meV=T
and the quantitative knowledge of all three energy scales Δv
(D, B), Δs (B), and E10 (D, B) used in our effective LL
diagram. We discuss a number of insights obtained by
examining the diagram in a wide range of D and B fields.
First of all, it is instructive to compare the large-D scenario
represented inFig. 3(a)with that of a smallD. Figure 3(b) plots
the calculated Δν’s at ν ¼ �2 and �3 with D0 ¼ 0 corre-
sponding to no unintentional doping. Δ�1 is too small to be
calculated accurately. The vanishing gap of ν ¼ �1 and�3 at
small D and the gap-enhancing effect of the D field corrob-
orates many experiments in the literature [5,18,22,40,41] and
is also supported by our data [see Fig. S3(a) in Ref. [31]].
The behavior of ν ¼ �2 is markedly different. As the

insets of Figs. 3(a) and 3(b) illustrate, the nature of the
ν ¼ �2 gap changes from a spin-splitting origin at large D
to a valley-splitting origin at small D. The transition occurs
near D� of ν ¼ 0 [see Fig. 4(a)]. The magnitude of the gap,
however, has slopes of 1.4 and 1.2 meV=T, respectively, in
the two regimes. This transition is thus difficult to detect
based on gap measurements alone. Indeed, measurements
of Δ�2 in the literature have all reported slopes of
1–1.4 meV=T [15,22,40,41], in excellent agreement with
the predictions of our model. The large gaps at ν ¼ �2, in
both scenarios, result from many-body enhancement and are
effectively represented in our single-particlelike diagram.
Figure 4(a) plots a full diagram of the E ¼ 0 octet,

calculated by fixing B ¼ 31 T and varying the D field.
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FIG. 2. (a) The measured ν ¼ 0 coincidence field D�
h (squares)

and D�
l (circles) vs B in devices 24 (red symbols), 06 (black

symbols), and 34 (orange symbols). Blue stars plot D�−1 obtained
in device 43. Olive stars are data read from Ref. [16] for D�

þ1

(upper point) and D�−1 (lower point) at B ¼ 31 T. Black dashed
lines plotD�

h ¼ 8.3B (the upper branch) andD�
l (the lower branch)

obtained from our diagram. The dark yellow dashed line plots the
predicted D�

�1. The inset plots the blue stars and the dark yellow
dashed line again for clarity. (b) E10 vsD�

l . The top axis marks the
correspondingB field. (c)E10=B vs

ffiffiffiffiffiffi

D�
l

p

. The blue line represents
a linear fit in the form of E10=B ¼ 0.058ð ffiffiffiffiffiffi

D�
l

p − 9.43Þ. Symbols
in (b) and (c) follow the notation of (a).
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FIG. 3. (a) Measured (Ref. [22]) and calculated (smooth curves)
gap energies Δν at ν ¼ �1,�2, and�3. The measured curves and
the filling factor labels in the inset are color coordinated. All
calculations use D0 ¼ 220 mV=nm with the field line pointing
downward. The solid red and black curves correspond to β ¼
1.7 meV=T. The dashed red and black curves correspond to β¼
2.1meV=T. The measured Δ−2 has a slope of 1.4 meV=T. (b)Δ�2

and Δ�3 calculated with D0 ¼ 0 and β ¼ 1.7, α ¼ 0.6 meV=T.
Δ�1 is below the limit of our calculation. Δ�2 has a slope of
1.2 meV=T. The insets of (a) and (b) illustrate the LL sequence
corresponding to each scenario, respectively.
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Four coincidences are seen. The calculated D�
h and D�

l for
the ν ¼ 0 state are plotted as black dashed lines in Fig. 2(a)
and match data well. This is expected, since we have reverse
engineered our diagram based on these observations. In
addition, the diagram predicts the closing of the ν ¼ �1
gaps at D�

�1, the value of which is calculated and plotted in
Fig. 2(a) as a dark yellow dashed line. Also plotted there are
our measurements forD�−1 (blue stars) obtained in device 43
using maps similar to that shown in Fig. 1(a) and data points
obtained by Hunt et al. [16] at B ¼ 31 T (olive stars). The
calculatedD�

�1 is e-h symmetric and captures the average of
the measured D�

þ1 and D�−1 very well. However, both our
data and that of Ref. [16] systematically deviate from the
calculated D�

�1, with D�−1 tending toward D�
l and D�

þ1

tending toward D�
h. This intrinsic asymmetry between

ν ¼ �1 is schematically illustrated in the inset of Fig. 4
(a). They point to ν-dependent many-body screening effects
missing in our model. Similarly, ν-dependent phase tran-
sition lines within each LL [16] are also not captured.
In our model, E10 vanishes in the vicinity of

D ∼ 100 mV=nm. A negligible E10 down to D ¼ 0 would

lead to LLs shown in Fig. 4(a), where ν ¼ �2 remain valley
split in nature. Experimentally, ν ¼ �2 undergoes another
transition at small D field, possibly to an isospin polarized
ground state [15], as illustrated in Fig. 4(b). The coinci-
dence field D�−2 occurs at ∼27 mV=nm at 31 T [16] and
exhibits a rough slope of ∼0.9 mV=nm=T at lower field
[15,17]. The scenario sketched in Fig. 4(b) is consistent
with the reported filling sequence below D�−2 [16] and the
observations of vanishingΔ�1 andΔ�3 atD ¼ 0 [16,17]. A
more quantitative understanding of this part of the LL
diagram would require careful, direct measurements of E10

at low D fields. An accurate knowledge of E10 would also
aid the understanding and control of even-denominator
fractional quantum Hall states in bilayer graphene, which
so far only occur in the n ¼ 1 orbitals [21,23,24].
The diagrams shown in Figs. 4(b) and 4(b) together

reproduce the five D-dependent filling sequences of the
E ¼ 0 octet, which are illustrated above the graphs [16].
The agreement is quite remarkable and attests to the
validity of the effective single-particle approach in captur-
ing many features of the complex many-body system.
Aqualitative failure of ourmodel occurs at ν ¼ 0 in lowD

field, where a spin ferromagnet is predicted, while experi-
ments point to a canted antiferromagnet with spin-valley
coherence [10,11,13]. This single-particlelike diagram is
also likely to fail near crossing points, where quantum Hall
ferromagnets coherent in more than one degree of freedom
may occur [15,42]. We hope that our model provides a
skeleton, upon which more sophisticated theoretical tools
and measurements can be built to illuminate the rich
quantum Hall physics bilayer graphene has to offer.
In summary, we constructed an empirical LL diagram

for the E ¼ 0 octet of bilayer graphene in the presence of
perpendicular magnetic and electric fields. This diagram
offers a unified, intuitive framework to interpret many
experimental findings to date, complete with quantitative
energy scales. We hope that it serves as a good base to
launch future experiments and calculations.
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