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We introduce in this Letter an exact solvable BCS-Hubbard model in arbitrary dimensions. The model
describes a p-wave BCS superconductor with equal spin pairing moving on a bipartite (cubic, square, etc.)
lattice with on-site Hubbard interaction U. We show that the model becomes exactly solvable for arbitrary
U when the BCS pairing amplitude Δ equals the hopping amplitude t. The nature of the solution is
described in detail in this Letter. The construction of the exact solution is parallel to the exactly solvable
Kitaev honeycomb model for S ¼ 1=2 quantum spins and can be viewed as a generalization of Kitaev’s
construction to S ¼ 1=2 interacting lattice fermions. The BCS-Hubbard model discussed in this Letter is
just an example of a large class of exactly solvable lattice fermion models that can be constructed similarly.
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Introduction.—Exact solutions of quantum interacting-
particle models in dimensions > 1 are rare and are
important resources for understanding the physics of
strongly correlated systems in dimensions > 1 [1–13].
More recently, a major advance in understanding the
mathematics of topological order was put forth by the
introduction of the exactly solvable TORIC Code [14] and
honeycomb [15–18] models by Kitaev and their general-
izations [19–27]. The exact solvability of the Kitaev
honeycomb model is a result of the existence of an infinite
number of conserved quantities (for an infinite lattice) in
the model. In this Letter, we show that Kitaev’s construc-
tion can be generalized to a class of S ¼ 1=2 lattice fermion
models that describe p-wave BCS superconductors with
equal spin pairing (ESP) and with on-site Hubbard inter-
action U. The generalization is based on the observation
that the Kitaev honeycomb lattice model can be expressed
in terms of a spinless fermion model [17,18] via a Jordan-
Wigner transformation. The “generalized” lattice fermion
models carry both “quasiparticle” and “solitonic” excita-
tions as in the Kitaev honeycomb model except that the
solitonic excitations are in general nontopological in lattice
fermion models.
To illustrate, we consider in this Letter a particular BCS-

Hubbard model with equal spin pairing [28–30] on cubic
(3D) and square (2D) lattices. The more general construc-
tions are discussed at the end of the Letter.
Model.—The Hamiltonian for our BCS-Hubbard model

is given by H ¼ H0 þHint, where

H0 ¼
X
hi;ji;σ

ðtijc†iσcjσ þ H:c:þ Δijc
†
iσc

†
jσ þ H:c:Þ

Hint ¼ U
X
l

�
nl↑ −

1

2

��
nl↓ −

1

2

�
ð1Þ

where hi; ji describes nearest neighbor sites with i ∈ A,
j ∈ B being lattice sites belonging to different sublattices of
the cubic or square lattice. tij ¼ tji and Δij ¼ −Δji are the
hopping matrix and BCS-pairing term between sites i and j,
respectively. The last term describes on-site Hubbard inter-
action U where l ∈ A, B, i.e., all lattices sites where
nlσ ¼ c†lσclσ . Notice that the BCS-pairing term describes
equal spin pairing.We shall consider a pairing termΔijwhich
is positive when i ∈ A, j ∈ B, corresponding to a staggering
nearest neighbor pairing field on the cubic and square lattices
(see Fig. 1). The Hamiltonian Eq. (1) is in general not
solvable. In the following we shall show that it becomes
exactly solvablewhenΔij ¼ tij ¼ twhere t is a real number.
Construction of the exact solution.—To see how the

model becomes exactly solvable we introduce Majorana
fermion representation [31]

ciσ ¼ ηiσ þ iβiσ; c†iσ ¼ ηiσ − iβiσ

cjσ ¼ βjσ þ iηjσ; c†jσ ¼ βjσ − iηjσ ð2Þ

FIG. 1. BCS-Hubbard model on square lattice, naming the
blue dot as A sublattice and red dot B sublattice. The hopping
potential t is uniform along all the nearest neighbor bond, that is
tA→B ¼ tB→A, while the ESP potential has a staggered form which
explicitly is ΔA→B ¼ −ΔB→A. U represents the Hubbard on-site
interaction.
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for fermions on i ∈ A and j ∈ B sublattices, respectively.
It is straightforward to show that the Hamiltonian H can
be represented in terms of the Majorana fermions η and β
where

H0 → 4i~t
X
hi;ji;σ

ð−βiσβjσ þ δηiσηjσÞ

Hint → U
X
l

ð2iηl↑βl↑Þð2iηl↓βl↓Þ ð3Þ

where t ¼ ~tð1þ δÞ and Δ ¼ ~tð1 − δÞ. We notice that in the
limit t ¼ Δ (or δ ¼ 0), the kinetic (H0) term is expressed in
terms of Majorana fermions β only and the η terms are
absent in H0. In this limit,

d
dt

ðηl↑ηl↓Þ ¼
1

iℏ
½ηl↑ηl↓; H� ¼ 0;

∀l and ð2iηl↑ηl↓Þ ¼ Dl are constants of motion. Using
the identities ðηlσÞ2 ¼ ðβlσÞ2 ¼ 1

4
, we obtain ðDlÞ2 ¼ 1

4
and

Dl ¼ � 1
2
.

SubstitutingDl into Eq. (3), we obtain in the limit δ → 0,

H → −4it
X
hi;ji;σ

ðβiσβjσÞ −
X
l

ðUDlÞð2iβl↑βl↓Þ ð4Þ

where Dl are C numbers. The Hamiltonian Eq. (4) is
quadratic and is exactly diagonalizable. The many-body
eigenstates of the Hamiltonian are divided into different
solitonic sectors characterized by different sets of eigen-
values fDlg. The ground state of the system is given by the
set of fDlg with lowest energy. The construction of the
exact solution is parallel to the construction of the exact
solution of the spin-1=2 Kitaev honeycomb model [15]
when the model is expressed in terms of spinless fermions
[17,18]. We show here that the Kitaev construction can be
extended to S ¼ 1=2 lattice fermions with Hubbard-type
interaction rather straightforwardly.
Properties of the exact solution (1)–U ¼ 0 limit.—We

first study the solution of Hamiltonian Eq. (3) in the limit
U ¼ 0. In this limitH → H0 describes a p wave, ESP BCS
superconductor with staggered nearest neighbor pairing
fields and with chemical potential μ ¼ 0, i.e., half-filled
bands.
It is convenient to “re-fermionize” the Majorana fer-

mions by introducing the composite fermions

dl2 ¼ ηl↑ þ iξlηl↓; d†l2 ¼ ηl↑ − iξlηl↓

dl1 ¼ βl↑ − iξlβl↓; d†l1 ¼ βl↑ þ iξlβl↓; ð5Þ
where ξl ¼ þð−Þ1 for l ∈ AðBÞ− sublattices.
The transformation Eqs. (2) and (5) and be understood

by introducing the fermions

cl⇄ ¼ 1ffiffiffi
2

p ðcl↑ � icl↓Þ ð6Þ

which represents fermions with spin pointing in þð−Þŷ−
directions, respectively. The d fermions are related to c⇄ by

dl→ ¼ 1ffiffiffi
2

p ðcl→ þ c†l←Þ;

dl← ¼ 1ffiffiffi
2

p
i
ðcl← − c†l→Þ ð7aÞ

and

dðAÞl2 ¼ dðBÞl1 ¼ dl→;

dðAÞl1 ¼ dðBÞl2 ¼ dl←; ð7bÞ

where dðAÞ and dðBÞ are fermions on AðBÞ sublattices,
respectively. Equation (7) represents a Bogoliubov–de
Gennes transformation between the d and c⇄ fermions.
As will be seen below and in next section, the d fermions

will form the quasiparticles for our model Hamiltonians.
It’s interesting to note from Eq. (7a) that

hc†l←cl←i þ hc†l→cl→i ¼ 1þ ihðd†l→d†l← − dl←dl→Þi; ð8aÞ

and

hc†l←cl←i − hc†l→cl→i ¼ hd†l←dl←i − hd†l→dl→i: ð8bÞ

It is interesting to note from Eq. (8a) that the (c)-fermion
charges are not directly proportional to the d-fermion
occupation number, and can be changed only by exciting
a pair of d fermions. This is because the d fermions are
an equal superposition of particle and hole states of c
fermions. As a result they carry only spin and no charge
individually.
In terms of the composite fermions d, H0 becomes

H0 → 2i~t
X
hi;ji

½−ðd†i1d†j1 −dj1di1Þþ δðd†i2d†j2−dj2di2Þ�

¼ 2i~t
X
hi;ji

½−ðd†i←d†j→−dj→di←Þþ δðd†i→d†j← −dj←di→Þ�

ð9Þ

which can be diagonalized straightforwardly by introduc-
ing sublattice Fourier transforms

dAðBÞkα ¼ 1

V

X
i∈AðBÞ

eik·ridiα

etc., where α ¼ 1, 2 and

H0 ¼
X

k;α¼1;2

ψ†
kαh

αðkÞψkα; ð10aÞ

where ψ†
kα ¼ ðd†Akα; dB−kαÞ and
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hαðkÞ ¼
�

0 ΔαðkÞ
Δ�

αðkÞ 0

�
ð10bÞ

with Δ1ðkÞ ¼ 4i~tðPi¼1;…;dim sin kiÞ where “dim” is the
dimension of the system and Δ2ðkÞ ¼ δΔ1ðkÞ.
Diagonalizing the Hamiltonian, we obtain

H0 ¼
X

k;α¼1;2

EαðkÞðγα†kþγαkþ þ γα†k−γ
α
k−Þ; ð11Þ

where EαðkÞ ¼ jΔαðkÞj,

γαkþðγα†−k−Þ ¼
1ffiffiffi
2

p ðdAkα − ðþÞidB†−kαÞ;

with ground state energy EG ¼ −
P

kαEαðkÞ, the ground
state being defined by the usual BCS requirement
γαk;�jGi ¼ 0 for all k and α.
We notice that E1ðkÞ ≠ E2ðkÞ, reflecting that the fer-

mion pairing breaks spin-rotation symmetry, as can be seen
directly from Eq. (9). The spectrum has a Fermi surface
denoted by E1ð2ÞðkÞ ¼ 0 which describes a rather unusual
gapless BCS superconductor [32].
It is also easy to show that for δ ≠ 0,

hd†l→dl→i ¼ hd†l←dl←i ¼
1

2
ð12Þ

for l in both sublattices, indicating that the ground state is
nonmagnetic.
Properties of the exact solution (2)–U ≠ 0, δ ¼ 0.—In

terms of the composite fermions d, the Hubbard interaction
term can be expressed as

U
X
l

ð2iηl↑βl↑Þð2iηl↓βl↓Þ ¼ U
X
l

�
nðdÞl→ −

1

2

��
nðdÞl← −

1

2

�

ð13Þ

where nðdÞl⇄ ¼ d†l⇄dl⇄. In the limit δ ¼ 0, the Hamiltonian in
terms of composite fermions becomes

H → −2i~t
X
hi;ji

ðd†i1d†j1 − dj1di1Þ þ U
X
l

ðDlÞ
�
nðdÞl1 −

1

2

�

ð14Þ
[see Eq. (7b) for the relation between 1(2) and ⇄] and

Dl ¼ nðdÞl2 − 1
2
¼ � 1

2
are conserved quantities which can be

determined (in the ground state) by minimizing the energy
of the system [see discussions after Eq. (3)]. We have
performed the calculation numerically and find thatDl have
uniform value UDl ¼ −ðjUj=2Þ on the ground state. In
particular, the U and −U ground states are related by
flipping Dl to −Dl with the solution for d1 fermions
remaining unchanged.
It may be surprising that although the d fermions carry

zero c-fermion charge, nevertheless they are affected by the

presence of Hubbard interaction as indicated in Eqs. (13)
and (14). To clarify this we construct the on-site states with
zero, one, and two occupied d fermions, respectively. Using
Eq. (7), it is easy to show that

j0di ¼
1ffiffiffi
2

p ð1þ c†←c
†
→Þj0i;

jsdi ¼ c†s j0i;

j⇄di ¼
1ffiffiffi
2

p ð1 − c†←c
†
→Þj0i; ð15Þ

where j0i denotes vacuum for the c fermions, j0di denotes
vacuum for the d fermions, jsdi denotes a state occupied by
a single d fermion with spin s ¼ ⇄, and j⇄di denotes a
state occupied by two d fermions. Notice that the c-fermion
number is equal to 1 in all four states. However, there exists
doubly occupied c-fermion state components in states j0di
and j⇄di, and they are both affected by the Hubbard
interaction U.
Fourier transforming, the quasiparticle Hamiltonian

Eq. (14) in the ground state sector UDl ¼ −ðjUj=2Þ
can be rewritten as H ¼ P

kψ
†
kh

ð1ÞðkÞψk, where ψ†
kα ¼

ðd†Ak1; dB−k1Þ and

hð1ÞðkÞ ¼
� − jUj

2
Δ1ðkÞ

Δ�
1ðkÞ jUj

2

�
: ð16Þ

The quasiparticle energy spectrum for the d1 fermions
is given by

H ¼
X
k

E1ðkÞðγð1Þ†kþ γð1Þkþ þ γð1Þ†k− γð1Þk−Þ; ð17aÞ

where

E1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ1ðkÞj2 þ

�
U
2

�
2

s
ð17bÞ

and

γð1Þkþðγð1Þ†−k−Þ ¼ ukþð−ÞdAk← − ðþÞivkþð−Þd
B†
−k→ ð17cÞ

where

uðvÞkþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 − ðþÞ jUj

2E1ðkÞ
�s

and uk− ¼ vkþ; vk− ¼ ukþ. The quasiparticles are charge-
less and carry spin 1=2 along the ŷ direction.
It is also straightforward to show that

hd†l1dl1i ¼
1

2V

X
k

�
1þ jUj

2E1ðkÞ
�

hd†l→d†l←i ¼ hdl←dl→i ¼ 0 ð18Þ

in the ground state for both sublattices l ∈ AðBÞ and
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my ¼
1

2
ðhd†l1dl1i − hd†l2dl2iÞ

¼ 1

4V

X
k

� jUj
2E1ðkÞ

þ sgnðUÞ
�

ð19Þ

is the staggered magnetization carried by the ground state
[recall that d1 ¼ d←ð→Þ in sublattices AðBÞ, respectively].
We see that the ground state is spin polarized for anyU ≠ 0.
The spins are fully polarized in the U → ∞ limit and
the spin polarization approaches zero when U → −∞. The
singular behavior of magnetization at U → 0 reflects the
singular nature of our Hamiltonian in the δ → 0 limit where
all d2 quasiparticles are localized.
Besides quasiparticle excitations d1, we may create

solitonic excitations by flipping Dl’s from the ground state.
The energy of a single soliton excitation Esol is obtained
by calculating the “ground state" energy of Hamiltonian
Eq. (14) with a singly flipped Dl. We have performed this
calculation numerically in a square lattice for various
values of U=t and the results are shown in Fig. 2. We
note that the excitation energy is proportional toU2 at small
U but is proportional to ~t2=jUj for jUj ≫ ~t. Physically, the
soliton excitation is created by adding (or subtracting) a
localized d2 fermion with a dressed cloud of d1 fermions.
The charge and spin carried by the soliton is calculated
using Eq. (8a) and we find that the soliton is chargeless and
carries spin 1 for U ≥ 5~t and spin 0 for U ≤ −5~t. There
exists also a small region around jUj ≤ 5~t where the spin is
1=2 [see Fig. 2]. Physically, the soliton is a bound state
between the d2 particle and d1 hole when U=5~t is large and
positive and is a bound state between d2 hole and d1 hole
when U=5~t is large and negative. The d1ð2Þ fermions are
unbounded when jUj ≤ 5~t. Consequently, we expect that
the soliton is a boson (spin ¼ 0, 1) when jUj ≥ 5~t and is a
spin-1=2 fermion when jUj ≤ 5~t.

To study the δ → 0, U → 0 region more carefully we
show in Fig. 3 the ground state staggered magnetization
magnitude as a function of U=~t in our square lattice
model with δ ¼ 0.0 and 0.1 computed using a mean-field
approximation�
nðdÞl→ −

1

2

��
nðdÞl← −

1

2

�
→

�
nðdÞl→ −

1

2

���
nðdÞl← −

1

2

��

þ
��

nðdÞl→ −
1

2

���
nðdÞl← −

1

2

�

−
��

nðdÞl→ −
1

2

����
nðdÞl← −

1

2

��

¼ −iðc†l;↑cl;↓Imðhc†l;↓cl;↑iÞ þ ξlc
†
l;↑c

†
l;↓Imðhcl;↓cl;↑iÞÞ

þ H:c:; ð20Þ

where we have used Eqs. (6) and (7) in deriving the last

equality. The ground state expectation values hðnðdÞl⇄ − 1
2
Þi

are determined self-consistently from the mean field theory.
The mean field result becomes exact in the limit U ¼ 0 and
U=δ → ∞ and the δ ≠ 0mean-field calculation provides an
extrapolation between the two exact limits. We find that the
singular behavior of staggered magnetization my at δ ¼ 0

as given by Eq. (19) is smoothed out for δ ¼ 0.1. The
excitation energies and spins carried by the solitions
for δ ¼ 0.1 are also calculated in the mean field theory
for different values of U and are shown in Fig. 2 for
comparison. We see that both the excitation energies and
spins carried by the solition are similar for δ ¼ 0.0 and 0.1.
Summary and discussions.—Summarizing, we introduce

in this Letter an exact solvable BCS-Hubbard model in
arbitrary dimensions. The construction of the exact solution
is parallel to the exactly solvable Kitaev honeycomb model
for S ¼ 1=2 quantum spins and can be viewed as a
generalization of Kitaev’s construction to S ¼ 1=2

FIG. 2. The excitation energy (ΔE left axis) and spin along the
ŷ direction (Δsy right axis) as a function of U for δ ¼ 0 and 0.1.
The blue-solid and blue-dashed lines represent the excitation
energies for δ ¼ 0, 0.1, and the orange-dotted and orange-dash-
dotted lines represent the spins carried by the excitations for
δ ¼ 0, 0.1, respectively.

FIG. 3. The staggered magnetization in the ŷ direction my as a
function of U for different δ’s. The blue-star and orange-circle
lines are for δ ¼ 0, 0.1 respectively.
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interacting lattice fermions. In fact, any Hamiltonian which
when represented in terms of Majorana fermions, has the
form

H ¼ 4i
X
hi;ji;σ

ðtijβiσβjσÞ þU
X
l

ð2iηl↑βl↑Þð2iηl↓βl↓Þ; ð21Þ

is exactly solvable following our discussion on the con-
struction on exact solution, independent of dimension and
lattice structure. The nearest neighbor hopping (t)þ pairing
(Δ) model on square (and cubic) lattices we consider in
this Letter is just an example of a large class of exactly
solvable lattice fermion models that can be written in the
form Eq. (21).
Physically, the presence of the ESP pairing term Δ

breaks spin rotation symmetry making one of the two
quasiparticle bands completely flat in the limit δ → 0. The
quasiparticles in the flat band are localized making the
resulting Hamiltonian exactly solvable. The same happens
in the Kitaev honeycomb model. We note that the quasi-
particles are nonperturbative objects that are related to the
original c-fermion states by a local Bogoliubov–de Gennes
transformation Eq. (7) in our model. As a result the
quasiparticle and solitonic excitations both carry nontrivial
charge and spin quantum numbers as discussed in the
main text.
We comment also that our construction of an exactly

solvable model suggests a new mean field decoupling
channel of Hubbard interaction Eq. (20) which can be
applied to any interacting fermion model when expressed in
terms of Majoranan fermions. The decoupling scheme
breaks spin-rotation symmetry and becomes exact when
one of the quasiparticle band becomes flat.
Experimentally, the model described by Hamiltonian

Eq. (1) requires a staggered ESP potential as well as the
equality between hopping term t and ESP potential Δ. One
plausible way to realize these is by optical Feshbach
resonance [33] in cold atom systems through which one
can have a spatial control of parameters characterizing the
system. However, this so far has been very difficult to
achieve. We note, however, that the exactly solvable model
described by Hamiltonian Eq. (21) can be obtained from
other tight-binding models, our BCS-Hubbard model with
a staggered ESP potential model is just one example among
many. We are currently exploring the most general exactly
solvable BCS-Hubbard type models that can be trans-
formed to Hamiltonian Eq. (21) through Bogoliubov–de
Gennes transformations.
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