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We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable
quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which
generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a
distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a
“molecular dynamics” for GHD: a numerical solver which is efficient, flexible, and which applies to the
presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We
identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing
a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable
quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.
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Introduction.—It is widely believed and acknowledged
that the late-time and large-scale dynamics of interacting
systems, whether quantum or not, is well described by
hydrodynamics. The applicability of hydrodynamics
encompasses a large number of many-body systems, from
classical gases and interacting quantum field theories [1,2],
where few hydrodynamic variables are necessary, to more
exotic systems such as the classical hard-rod model [3].
Recently, the realm of hydrodynamics was extended to
integrable quantummodels by accounting for the infinity of
conservation laws they admit [4,5]. On large (Eulerian)
scales fluid cells are in generalized Gibbs ensembles (GGE)
[6]. The theory describing this was dubbed generalized
hydrodynamics (GHD). It has been very successful in many
studies of quantum chains and field theory [7–11]. It is
applicable [4] to the Lieb-Liniger model [12], and, thus can
describe the inhomogeneous dynamics in quasi-one-
dimensional cold atom setups [13] such as in the celebrated
quantum Newton cradle [14].
In this Letter, we show that the GHD equations also

emerge as descriptions of classical gases. A special case of
GHD reproduces the equations, mathematically derived by
Boldrighini, Dobrushin, Sukhovin in 1983 [3], for a gas of
hard rods on the line colliding elastically—a simple
observation used in Ref. [15]. We show that a modification
of the hard-rod dynamics leads to the general form of GHD
found in integrable quantum systems. In the modified
problem, pointlike “quasiparticles” are subject to veloc-
ity-dependent spatial shifts upon colliding, generalizing the
velocity tracers in the hard rod problem. We show that this
new classical gas is extremely easy to implement on the
computer. This gives a “molecular dynamics” (MD) solver
for GHD that is numerically efficient, that accounts for

external forces, and that is flexible enough to offer the
possibility of adding other effects such as integrability
breaking, and viscosity. MD solvers are known for their
usefulness in low-temperature Fermi liquids, strongly
interacting gases and high-temperature or -density plasmas,
see, e.g., Refs. [16–18]. The MD solver developed here
offers better performance due to the stability of the
integrable quasiparticles at the heart of the system’s
dynamics. It is free from limitations on temperature,
interaction strength, and density, only requiring Eulerian
scales.
It is well known that velocity-dependent shifts occur in

soliton scattering, and equations of the GHD form have in
fact been found to describe classical soliton gases [19].
Wave packets of excitations in quantum models, although
not strictly solitons, have also been observed to display
such solitonlike features [20]. We identify the GHD of any
quantum model with that of the gas of its solitonlike wave
packets. This, we believe, is a remarkable quantum-
classical correspondence. From the viewpoint of local
averages in Eulerian hydrodynamics, all quantum effects
can be accounted for by considering the two-body classical
scattering of solitonlike wave packets.
Generalized hydrodynamics.—Hydrodynamics is a

theory for the dynamics of weakly inhomogeneous, non-
stationary states of many-body physics. It is based on local
entropy maximization: local averages are related to each
other in the same way they are in entropy-maximized
homogeneous, stationary states, as per the equations of
state. Eulerian hydrodynamics (that is, neglecting viscosity
effects) is obtained by imposing the local conservation
laws, and gives rise to a macroscopic dynamics for the local
Lagrange parameters or any parametrization of the local
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state (hydrodynamic variable). These concepts have
recently been applied to one-dimensional integrable models
[4,5], where entropy is maximized with respect to infinitely
many conserved charges giving GGEs [6]: this is gener-
alized hydrodynamics.
Up to now, the most powerful equations of GHD arise in

the quasiparticle description of Bethe ansatz integrable
models [21]. A quasiparticle has a “rapidity” θ and a
species a. These parametrize the energy EðθÞ and the
momentum pðθÞ, which form the group velocity vgrðθÞ ¼
E0ðθÞ=p0ðθÞ [we use boldface letters for pairs θ ¼ ðθ; aÞ,
and the prime symbol (0) for derivatives d=dθ]. For
instance, in relativistic (Galilean) models θ is the true
rapidity (the velocity). The interaction is characterized by
the two-particle differential scattering phase, φðθ;αÞ. A
good hydrodynamic variable is the quasiparticle density
ρpðθÞ; the number of quasiparticles of type a in the phase
space element ½x; xþ dx� × ½θ; θ þ dθ� is ρpðθÞdθdx.
It was shown in Refs. [4,5] that the infinity of hydro-

dynamic conservation laws of GHD give this continuity
equation:

∂tρpðθÞ þ ∂x½veffðθÞρpðθÞ� ¼ 0; ð1Þ
where the effective velocity veffðθÞ solves

veffðθÞ ¼ vgrðθÞ þ
Z

dα
φðθ;αÞ
p0ðθÞ ρpðαÞ½veffðαÞ − veffðθÞ�

ð2Þ
(here and below

R
dθ ¼ P

a

R
R dθ, and space-time depend-

ence is kept implicit). The effective velocity veffðθÞ [4,5,22]
is the large-scale, physical velocity of the quasiparticle θ as
influenced by the fluid state in which it travels. This can be
generalized to the presence of external inhomogeneous
fields [7]. Here it is sufficient to recall the result for
Galilean models, with particles of masses ma, within a
force potential VðxÞ:

∂tρpðθÞ þ ∂x½veffðθÞρpðθÞ� − ð∂xV=maÞ∂θρpðθÞ ¼ 0:

ð3Þ
In the Lieb-Liniger (LL) model and other field theories,

these equations were derived in Refs. [4,7], and in the XXZ
quantum chains in Ref. [5] (without force fields). The LL
model is of particular interest and will be chosen below in
order to give examples of our general results. It represents
Galilean-invariant interacting Bose gases, experimentally
realizable in cold atom gases [13]. In the repulsive regime,
there is a single particle species, with

φðθ; αÞ ¼ 2c=½ðθ − αÞ2 þ c2� ðLieb-LinigerÞ; ð4Þ
where c is the coupling strength (see the Supplemental
Material [23] for the attractive regime).
Molecular dynamics: The classical flea gas.—The GHD

equations are Euler-type hydrodynamic equations. An
important problem in GHD is to numerically solve
Eqs. (1) and (3). This is of particular interest for the LL

model within a force field as it applies, for instance, to the
quantum Newton cradle setup [14]. Euler-type equations
are often solvable by using appropriate molecular dynamics
(MD). This requires finding a particle dynamics with the
correct equations of state. As shown in Ref. [4], here
the equations of state amount to the relation (2) between the
effective velocity and the quasiparticle density. We now
develop a family of classical gases which, at the Euler scale,
reproduce exactly Eq. (2) and the equations of GHD,
Eqs. (1) and (3).
In order to make the argument clear, let us first recall

how the classical hard rod model [1,3] connects with GHD;
see Ref. [15]. Rods (nonintersecting one-dimensional seg-
ments) of a fixed length d move inertially at various
velocities v on the infinite line, except for elastic collisions
at which they exchange their velocities. The emergence of
hydrodynamic equations on large scales in this model for a
large class of initial conditions was rigorously demon-
strated [3]. Let ρclðvÞ be the density of rods with velocity
v ðρclðvÞdxdv is the number of rod centers within the phase
space element ½x; xþ dx� × ½v; vþ dv�Þ. Then,

∂tρclðvÞ þ ∂x½veffcl ðvÞρclðvÞ� ¼ 0; ð5Þ
where veffcl ðvÞ satisfies [3]

veffcl ðvÞ ¼ vþ d
Z

dwρclðwÞ½veffcl ðvÞ − veffcl ðwÞ�: ð6Þ

These are exactly the Eqs. (2) and (1), in the Galilean case
(v ¼ θ), with a single unit-mass particle species, with
negative differential scattering length φðv; wÞ ¼ −d (In
the quantum context, this corresponds to a purely expo-
nential scattering phase, Sðθ; αÞ ¼ e−idðθ−αÞ [24]. In the
large-c region of the repulsive LL model, one also finds
constant φðθ; αÞ ∼ 2=c, but this would correspond to
negative rod lengths d ¼ −2=c.) and with ρpðvÞ ¼ ρclðvÞ
and veffðvÞ ¼ veffcl ðvÞ. This simple observation suggests
that if we allow the rods to collide more “softly,” so that d
becomes velocity dependent, the hydrodynamics of the
emerging gas might be identical to that of GHD. In a naive
picture, neighboring rods of velocities v and w would
exchange their velocities when their centers are at distance
dðv; wÞ, as if rods were elastically contractible. However,
this dynamics causes difficulties with respect to many-body
scattering and for negative or nonsymmetric lengths.
Consider instead a velocity tracer, following the center of

a rod of velocity v. This is a pointlike quasiparticle, with
trajectory that of a free particle except for jumps by a
distance d at rod collisions. Here rod collisions occur
when the positions x1 < x2 of two quasiparticles satisfy
x2 − x1 ¼ d and their velocities v1 > v2, and at this instant
x1 ↦ x1 þ d and x2 ↦ x2 − d. Crucially, this means that
every crossing of two quasiparticles’ trajectories comes
with such trajectory shifts, and this within microscopic
time. In fact, any dynamics with this property, independ-
ently of the microscopic details of the trajectory shifts,
leads to the same hydrodynamics. We may thus modify the
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dynamics by proclaiming collisions to occur at x2 ¼ x1, at
which the involvedquasiparticles instantaneously jump, like
fleas, by a distance d. The jump is “forward”: the quasi-
particle on the left (right) jumps towards the right (left). This
is easily generalizable to velocity-dependent jump lengths: a
quasiparticle of velocity v that enters in collision with one of
velocityw jumps bydðv; wÞ, forward if positive, backward if
negative. Importantly, the jump lengths may be positive or
negative, and need not be symmetric with respect to
exchange of velocities. A jump is an infinitely fast dis-
placement, during which more collisions can occur, occa-
sioning new jumps in a chain reaction that reorganizes the
quasiparticles’ positions in the local neighborhood. This is
the classical “flea gas”; see the Supplemental Material [23]
for a precise, somewhat subtle algorithm.
We now argue that this reproduces GHD. We are looking

for the effective velocity veffcl ðvÞ of a test quasiparticle of
velocity v, defined through the actual distance Δx ¼
Δtveffcl ðvÞ that it travels in a macroscopic time Δt. The
gas is characterized by the density ρclðwÞ, and by standard
arguments the continuity Eq. (5) holds. The quantity Δx
results from the total linear displacement at velocity v,
given by Δtv, along with the accumulation of jumps the
quasiparticle undergoes as it travels through the gas. The
oriented distance jumped due to hitting a quasiparticle that
has velocity w is sgnðv − wÞdðv; wÞ. The average
number of quasiparticles of velocity between w and wþ
dw that has been crossed, is the total number dwρclðwÞΔx
present within the length Δx, times the probability
Δt=Δx × jveffcl ðvÞ − veffcl ðwÞj that the test particle crosses
such a quasiparticles in time Δt. Assuming that the
effective velocity is monotonic with v (see the
Supplemental Material [23]), the total jumped distance
is obtained by integrating the product of these:R
dwdðv; wÞρclðwÞΔt½veffcl ðvÞ − veffcl ðwÞ�. Equating the total

jumped distance plus the total linear displacement with
Δx ¼ Δtveffcl ðvÞ, we obtain

veffcl ðvÞ ¼ vþ
Z

dwdðv; wÞρclðwÞ½veffcl ðvÞ − veffcl ðwÞ�: ð7Þ

Therefore, the GHD equations (1), in the case of a single
species, reproduce the hydrodynamics of the flea gas under
the following identification:

ρclðvÞdv¼ρpðθÞdθ; v¼vgrðθÞ; veffcl ðvÞ¼veffðθÞ; ð8Þ
along with

dðv; wÞ ¼ −φðθ; αÞ=p0ðθÞ: ð9Þ
This is readily generalizable to many species, with, in

Eq. (7), velocity parameters v, w replaced by doublets
v ¼ ðv; aÞ, w ¼ ðw; bÞ, and the driving velocity value v
replaced by vgrðvÞ. We recover Eq. (2) by reparametriza-
tion. It is clear that, if an external potential VðxÞ affects the
velocities v of the quasiparticles of the flea gas so that there
is an acceleration dv=dt ¼ −∂xV=m, the continuity equa-
tion (3) holds.

Domain of validity.—As any molecular dynamics, the
flea gas reproduces the GHD equations only at the gas’s
Euler scale. Two sets of lengths determine this scale: (i) the
interparticle length 1=ρ [ρ ¼ R

dvρclðvÞ], and (ii) the jump
distance dðθ;αÞ. We expect the Euler scale to be reached
when these two lengths are much smaller than the variation
length—the typical length over which ρ varies. In this case,
particles locally maximize entropy, as jumps do not send
them away from their fluid cell and many jumps occur
within a fluid cell. The flea gas cannot solve GHD away
from such conditions. Of course, GHD only applies under
similar conditions; for instance, in quantum models,
variation lengths must be much bigger than the scattering
length, determined by φðθ;αÞ.
Numerical checks.—We have numerically simulated the

classical gas corresponding to the LL model (4) with c ¼ 1,
m ¼ 1. Besides being a model of experimental interest, the
GHD of the LL model was studied in Ref. [4] at length,
allowing benchmarking of the MD developed here. All
verifications are done well within the strong coupling
regime, far from either the Tonks-Girardeau or the free
boson points. First, we have verified the form of the
effective velocity by evaluating explicitly, in a homo-
geneous stationary gas with LL coupling parameter
γ ¼ mcρ−1 ≈ 1.1, the total displacement of a test quasi-
particle divided by the time spent, and comparing with the
result of solving numerically the integral equation (2). See
Fig. 1(a); the agreement is excellent. Second, we have
implemented a domain wall initial condition in the LL
model, and checked that its dynamics reproduces the self-
similar solution derived in Ref. [4]. See Fig. 1(b), as well as
Fig. 2 in the Supplemental Material [23]. Again, these
provide convincing evidence of the validity of the MD.
Finally, we have implemented the “breathing motion” of
the LL model occurring after a sudden change of frequency

FIG. 1. GHD for the LL model with m ¼ 1, c ¼ 1 is simulated
using the classical flea gas. (a) Truncated Gaussian distribution
ρclðvÞ ¼ 0.5e−v

2

χð−3 < v < 3Þ. Effective velocity evaluated us-
ing ≈1500 trajectories over a time of 1200 (blue); using the
formula (2) (red). (b) Density profile from domain wall initial
condition, initial left and right temperatures 10 and 1=3, respec-
tively, at times t ¼ 10, 30, 50, and 70. Simulation with ≈ 2400
quasiparticles (initial baths of lengths 1000, open boundary
condition) averaged over 1000 samples (blue); exact self-similar
solution (red).
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of a harmonic confining potential. This has been studied
experimentally, with tDMRG and with conventional hydro-
dynamics; see Ref. [25]. As found in Ref. [11], GHD
supersedes conventional hydrodynamics at nonzero tem-
perature, and thus it is important to test the MD solver’s
validity in this case. The initial state, at temperature T ¼ 1,
is evolved within a wider harmonic potential. As expected,
the density expands and contracts almost periodically (with
observed period slightly smaller than that of the evolution
potential, as the interaction slows down the particles; see
Fig. 3 in the Supplemental Material [23]). We have
simulated this setup using the flea gas, and directly verified
the conservation equations (3), integrating over cells in
phase space-time. Without changing scattering and inter-
particle lengths, we have considered setups with 120 and
1200 particles. These have widely different variation
lengths, affecting the accuracy of the hydrodynamic
approximation. With a gas of as little as 120 particles,
we found Eq. (3) to be satisfied to 0.2%–0.9%, and with
1200 particles, 0.08%–0.16%. The accuracy is higher in
central cells, away from the boundary of the density support
where hydrodynamics is expected to fail. This quantifies
the accuracy of the hydrodynamic approximation, and
provides precise tests of how MD solves the GHD
equations within force fields. See the Supplemental
Material [23] for details.
Quantum-classical dictionary.—The GHD equations

were derived in quantum integrable models using quantum
integrability. There is thus a quantum-classical dictionary,
such as Eqs. (8) and (9). Further elements of the dictionary
are as follows. Consider the “free space fraction”
ρfreeðvÞ ¼ 1 −

R
dwdðv;wÞρclðwÞ. In the hard rod gas, this

is the fraction of a unit length where there is no rod at all. In
the general case, that available omitting the distances
jumped if forward, or adding them if backward; in the
latter, the effect of quasiparticle scattering is to increase the
space available. We recognize the free space fraction as, up
to a factor, the quantum density of states ρsðθÞ [21],
ρfreeðvÞ ¼ 2πρsðθÞ=p0ðθÞ. The occupation function nðθÞ ¼
ρpðθÞ=ρsðθÞ plays an important role in GHD, being the
normal mode of the hydrodynamics [4,5]. We find that
nðθÞp0ðθÞdθ=ð2πÞ equals the number of quasiparticles per
unit length of free space ρclðvÞdv=ρfreeðvÞ. The classical
picture also helps understand the form of the effective
velocity. Let us write it as veffcl ðvÞ ¼ ½vgrðvÞ − R

dwdðv;
wÞρclðwÞveffcl ðwÞ�=½1 −

R
dwdðv;wÞρclðwÞ�, and consider

dðv; wÞ < 0. The gas slows down a test quasiparticle with
respect to its “center of momentum,” as it is affected by
backwards jumps at collisions. There is thus a friction
effect—the denominator—and a drag effect—the second
term in the numerator, which were numerically noticed in
Ref. [4] when studying steady states. Finally, note that the
flea gas is invariant under simultaneous scaling of space,
time, and jump lengths; in the quantum problem a physical
length scale arises due to ℏ in the differential scatter-
ing phase.

Soliton gases.—The above intriguing quantum-classical
correspondence might be explained in terms of soliton
gases. In classical soliton scattering, two solitons retain,
asymptotically, their form and their speeds, the only change
being in shifts of their trajectories. These shifts are velocity
dependent, and thus the flea-gas dynamics is similar to that
of classical soliton scattering. Indeed, it turns out that
equations of the GHD form, without force fields, were
already found in recent studies of gases of solitonic modes
of classical field theory [19]. In these studies an effective
velocity emerges that is determined by the soliton’s
scattering shifts dðv; wÞ as per Eq. (7). The integrability
of the resulting equations was investigated; see
also Ref. [26].
Why do gases of classical solitons have the same Euler

hydrodynamics as that of quantum models? In the quantum
context, it is known that quasiparticle excitations have
solitonlike features. This was recently made numerically
explicit by forming wave packets of quasiparticle excita-
tions in the Heisenberg quantum chain [20]. It was seen that
the trajectory shifts are given by the differential scattering
phase of the quantum model. This exactly agrees with the
relation (9) that we derived between the shift dðv; wÞ and
the differential scattering phase φðθ;αÞ. Wave packets in
quantum models are, however, not solitons: in the example
of Ref. [20], for instance, they do not keep their shape but
rather spread with time, as do wave packets of free fields.
But this effect is subleading: at the Euler scale, only the
scattering shifts play a role. This explains why the Euler
hydrodynamics of true classical solitons is the same as that
of quantum models upon identifying the solitonlike fea-
tures of quantum excitations, and is expected to be general.
That quantum gases can be seen as the gas of their classical
solitonlike wave packets gives, we believe, new insight into
the large-scale dynamics of quantum models. It is also in
agreement with the picture according to which multiparticle
scattering processes are sequences of well separated two-
body scattering processes, at the basis of the (generalized)
thermodynamic Bethe ansatz [21].
Conclusion.—We have developed a classical gas dynam-

ics that reproduces, at the Euler scale, the equations of
GHD for arbitrary differential scattering phase. This gives
an efficient way of simulating full space-time dependent
profiles solving GHD. It complements the exact “solution
by characteristics” found in Ref. [9] and numerical methods
[10,11]. It is the first numerical procedure applicable in
general states to the experimentally relevant case of the LL
model in force fields. With the numerical technique
developed here, the quantum Newton cradle setup [14]
is now accessible, which it will be important to analyze.
We have explained the ensuing quantum-classical dic-

tionary, and how quantum models relate to the gases of
their solitonlike excitation wave packets. The connection
between GHD and soliton gases has far-reaching implica-
tion. For instance, the integrable structures of soliton gases
[19] can now be used in quantum models, and may have
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connections with the solution by characteristics [9]. The
GHD equation, including for force fields, was only derived
in quantum models [7]; it would be interesting to under-
stand its meaning in classical soliton gases. The large-
deviation theory of classical gases is also a problem of
interest, especially its relation with that of quantum
problems (see, e.g., Ref. [27]). Soliton gases may be seen
as wide generalizations of the semiclassical picture pro-
posed in Ref. [28], and may lead to efficient ways of
evaluating correlations in certain regimes.
Viscosity or other higher-derivative effects in the quan-

tum problems will have many sources, including the finite
scattering length taken into account by the classical gas,
but also wave packet spreading. By appropriately modi-
fying the classical algorithm, it might be possible to
phenomenologically account for such corrections to
GHD, as well as for integrability-breaking processes,
which would otherwise be extremely difficult to numeri-
cally implement. We believe these constitute very exciting
research directions.

We thank Robert Konik and Herbert Spohn for useful
discussions. Hospitality is acknowledged as follows: all
authors thank SISSA and ICTP, Trieste (visits and work-
shop “Entanglement and non-equilibrium physics of pure
and disordered systems,”), B. D. and T. Y. thank City
University New York (workshop “Dynamics and hydro-
dynamics of certain quantum matter,”), T. Y. thanks Tokyo
Institute of Technology (Japan) and B. D. thanks the
Perimeter Institute (Canada). T. Y. is grateful for the
support from the Takenaka Scholarship Foundation. J.-
S. C’s work is part of the Delta-ITP consortium, a program
of the Netherlands Organization for Scientific Research
(NWO) that is funded by the Dutch Ministry of Education,
Culture and Science (OCW).

[1] H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer-Verlag, Heidelberg, 1991).

[2] P. Nozieres and D. Pines, The Theory of Quantum Liquids
(Benjamin, New York, 1966); S. Jeon and L. G. Yaffe, From
quantum field theory to hydrodynamics: Transport coeffi-
cients and effective kinetic theory, Phys. Rev. D 53, 5799
(1996); A. G. Abanov, in Applications of Random Matrices
in Physics, edited by E. Brezin, V. Kazakov, D. Serban, P.
Wiegmann, and A. Zabrodin, NATO Science Series II:
Mathematics, Physics and Chemistry (Springer, Dordrecht,
2006), Vol. 221, p. 139161; E. Bettelheim, A. G. Abanov,
and P. Wiegmann, Nonlinear Quantum Shock Waves in
Fractional Quantum Hall Edge States, Phys. Rev. Lett. 97,
246401 (2006); J. Bhaseen, B. Doyon, A. Lucas, and K.
Schalm, Far from equilibrium energy flow in quantum
critical systems, Nat. Phys. 11, 509 (2015); D. Bernard
and B. Doyon, A hydrodynamic approach to non-equilib-
rium conformal field theories, J. Stat. Mech. (2016) 033104.

[3] C. Boldrighini, R. L. Dobrushin, and Yu. M. Sukhov,
One-dimensional hard rod caricature of hydrodynamics,
J. Stat. Phys. 31, 577 (1983).

[4] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura,
Emergent Hydrodynamics in Integrable Quantum Systems
Out of Equilibrium, Phys. Rev. X 6, 041065 (2016).

[5] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti,
Transport in Out-of-Equilibrium XXZ Chains: Exact
Profiles of Charges and Currents, Phys. Rev. Lett. 117,
207201 (2016).

[6] A. Polkovnikov, K. Sengupta, A. Silva, andM. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantumsystem,Rev.Mod. Phys.83, 863 (2011);C.Gogolin
and J. Eisert, Equilibration, thermalisation, and the emer-
gence of statistical mechanics in closed quantum systems: A
review, Rep. Prog. Phys. 79, 056001 (2016); J. Eisert, M.
Friesdorf, and C. Gogolin, Quantummany-body systems out
of equilibrium, Nat. Phys. 11, 124 (2015); F. Essler and M.
Fagotti, Quench dynamics and relaxation in isolated inte-
grable quantum spin chains, J. Stat. Mech. (2016) 064002;
L. Vidmar and M. Rigol, Generalized Gibbs ensemble in
integrable lattice models, J. Stat. Mech. (2016) 064007.

[7] B. Doyon and T. Yoshimura, A note on generalized hydro-
dynamics: Inhomogeneous fields and other concepts,
SciPost Phys. 2, 014 (2017).

[8] E. Ilievski and J. De Nardis, On the microscopic origin of
ideal conductivity, arXiv:1702.02930; M. Ljubotina, M.
Znidaric, and T. Prosen, Spin diffusion from an inhomo-
geneous quench in an integrable system, Nat. Commun. 8,
16117 (2017); V. B. Bulchandani, R. Vasseur, C. Karrasch,
and J. E. Moore, Bethe-Boltzmann hydrodynamics and spin
transport in the XXZ chain, arXiv:1702.06146 [Phys. Rev.
B (to be published)]; J. Dubail, J.-M. Stéphan, J. Viti, and P.
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