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Quantification of Turbulent Driving Forces for the Geodesic Acoustic Mode
in the JFT-2M Tokamak
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We investigate spatial structures of turbulence and turbulent transport modulated by the geodesic
acoustic mode (GAM), from which the excitation mechanism of the GAM is discussed. The GAM is found
to be predominantly excited through a localized Reynolds stress force, rather than the dynamic shearing
force. The evaluated growth rate is larger than the linear damping coefficients and is on the same order of
magnitude as the effective growth rate evaluated from time evolution in the GAM Kkinetic energy.
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Zonal flows in nature have attracted interest because of
their great impact on the dynamics of the system [I].
Examples are seen in atmospheric circulation, solar dynam-
ics, and magnetically confined fusion plasmas. Zonal flows
in fusion plasmas are categorized into two branches, low
frequency zonal flows (LFZFs) [2] and geodesic acoustic
modes (GAMs) [3—18]. Both zonal flows are believed to have
a beneficial property for fusion plasma confinement, that is, a
turbulence transport regulation [10]. Therefore, they have
been intensely studied over the last two decades. Common
features of the GAMs identified in tokamaks are the acoustic
scaling of the GAM frequency, toroidally and poloidally
symmetric potential structure, radial propagation, coupling
with density perturbation, and others. In particular, the
existence of a nonlinear interaction between the GAM and
turbulence has been demonstrated in many devices [3—12].
However, detailed experimental investigations focusing on
the excitation mechanism have not been performed. Two
different turbulent driving mechanisms have been proposed
by theoreticians; those are the Reynolds stress [1] and the
dynamic shearing [13,14]. To date, no experimental quanti-
fication has succeeded for these two driving forces. In order
to evaluate these driving forces, a detailed measurement of
the turbulent potential fluctuation with a high spatial reso-
lution must be performed, which is still challenging.
Determination of the GAM excitation mechanism is highly
desirable to deepen the understanding of the turbulence
structure formation that involves a nonlinear interaction
between the flow and turbulence.

In this Letter, we investigate the spatial structures of
turbulence and turbulent transport modulated by the geo-
desic acoustic mode, based on a data set obtained with the
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heavy ion beam probe (HIBP) [6,7]. Focusing on the
energy exchange channels between the GAM and turbu-
lence, the Reynolds stress force [1] and the dynamic
shearing force [13,14] are quantified for the first time. A
localized energy input into the GAM through the Reynolds
stress force is found 3 cm inside the last closed flux surface,
approximately a normalized minor radius of 0.9. This
location corresponds to the amplitude peak of the GAM,
but the characteristic scale of the energy input is much
smaller than that of the eigenstructure. The dynamic
shearing force is less dominant compared to the
Reynolds stress force. The magnitude of the energy input
into the GAM is considered to be sufficiently large to
dominate linear damping terms.

JFT-2M is a medium size tokamak with a major radius R of
1.3 m and an averaged minor radius a of 0.3 m. The
codirected neutral beam injection (NBI) is the main auxiliary
heating for the target plasma having the line averaged
electron density of 1.1 x 10" m™ in the L mode. The
power of the NBI is 750 kW, which corresponds to the
threshold power for achieving the L-H transition. An upper
single-null divertor configuration (VB drift directed toward
the X point) is employed with the toroidal magnetic field B,
of 1.17 T, the plasma current /, of 190 kA, and the safety
factor at the flux surface enclosing 95% of the total poloidal
flux gq5 of 2.9.

A schematic of the HIBP on JFT-2M [6,7] is shown in
Fig. 1(a). A singly ionized thallium beam is injected from
the top side, which is charged doubly inside the plasma.
From the beam energy and the beam current, the local
electrostatic potential ¢ and local electron density n are
determined with a sampling time of 1 us. Four sample
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FIG. 1. (a) Schematic of the heavy ion beam probe and (b) time
evolution of the potential fluctuation spectrum at r — a ~ —3 cm.

volumes radially and poloidally separated are simultane-
ously diagnosed. The angle between the row of the sample
volumes and the normal vector of the magnetic surface can
be altered by changing the operating parameters of the
HIBP, from which the poloidal and radial spatial structures
of the fluctuations can be obtained. The peripheral region
(=5 < r—a < 0 cm) of the top side of the torus is covered
in a shot-to-shot manner.

The GAM oscillation is also detected by an in-vessel
magnetic probe signal at a fixed location. The radial
structure of the GAM is reconstructed with respect to
the magnetic fluctuation signal, which has a very good
reproducibility (less than a 5% difference in mean ampli-
tude). Moreover, in order to improve the signal to noise
ratio, we perform a conditional averaging of the HIBP
signals as a function of a relative time z. This is defined as
N7'SN  W(#; + ) for an arbitrary variable P, where #;
indicates the ith time at which the phase of the GAM in the
magnetic fluctuation passes zero and N is the total number
of the zero passings. The use of the conditional averaging is
essential to evaluate modulation patterns in the nonlinear
terms, such as the Reynolds stress or the turbulent particle
flux. Note that analysis methods based on Fourier decom-
position were used to investigate the energy exchange
between flows and turbulence [12,19] or the energy cascade
among turbulence fluctuations that is stimulated by the
GAM [8]. In this study we use the conditional averaging in
order to treat quantities in the time domain following the
theoretical expressions [13,14].

The GAM is observed in the beginning of the L-mode
phase for ~200-300 ms, after which the limit-cycle oscil-
lation emerges and the GAM oscillation is strongly
damped. A typical time evolution of the electrostatic
potential fluctuation spectrum from 10 ms after the NBI
turn-on is shown in Fig. 1(b). A preceding study revealed
basic properties of the GAM, including the m = 0 poloidal
structure of the potential oscillation, the radial eigenmode
structure, the modulation of the ambient turbulence and
turbulent transport, and others [6,7]. Figure 2(a) shows the
radial profile of the frequency dependent potential power
spectrum during the L mode. The black dots show a
theoretical prediction of the GAM frequency c¢,/R, where
¢, shows the sound speed. A coherent spectral peak of the
GAM appears at fgam = 15 kHz with a spectral width of

#90048-90060

-
o
N

Freq. [kHz]

10"}

Phase [27 rad]

Skewness
(=) —

FIG. 2. Radial profiles of (a) the frequency dependent potential
power spectrum density, (b) the GAM amplitude and phase,
(c) the skewness of GAM amplitude, and (d) the time evolution of
the GAM potential fluctuation and its envelope at r — a ~ —1 cm.

Ofcam ~ 5 kHz. Although ¢, /R varies with the radius, the
GAM frequency remains almost constant, being referred to
as the eigenmode GAM [15]. Three quantities that have
different time scales are defined: a mean quantity ¥, an
oscillation quantity in the GAM frequency range ¥
(13 <f<18kHz), and a turbulent fluctuation ¥
(40 < f <110 kHz), where ¥ is an arbitrary variable.
The frequency ranges for the GAM and the turbulence
are shown in Fig. 2(a). Figure 2(b) shows the radial profiles

of the amplitude and phase of the conditional averaged q’AJ
signal. A peak appears at r — a ~ —3 cm, at which the slope
of the phase is positive, showing the outward propagation
of the GAM. Towards the edge, the slope of the phase is
gradually flattened and reverses at r — a ~ —1 cm, possibly
due to the reflection of the GAM at the boundary [20].
Figure 2(d) shows the time evolution of (ﬁ and its amplitude
at r — a ~ —1 cm. The amplitude of the GAM fluctuates in
time and shows an intermittent property [4,9,11]. It is
worthwhile to investigate the higher-order moments of the
GAM amplitude to quantify the intermittency. Figure 2(c)
shows the radial profile of the skewness, which is the third
order moment of the GAM amplitude. A positive (negative)
value of the skewness indicates that the data are charac-
terized by positive (negative) spikes. Skewness is around
zero at r — a ~ —3 cm, and increases towards the edge. The
variation in the skewness profile is discussed below.
Kurtosis, the fourth order moment, has a relatively large
scatter of points and its behavior is not conclusive.
Modulations in the turbulence amplitude in the potential
fluctuation S and the turbulence wave number k, are
induced by the GAM. Figures 3(a) and 3(b) show the
amplitude and phase of § and k, with respect to the
magnetic field fluctuation in the GAM. The turbulence
wave numbers derived from the potential fluctuation and
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FIG. 3. Amplitude and phase profiles of the turbulence and

turbulent transport modulation at the GAM frequency: (a) turbu-
lence amplitude, (b) radial wave number, (c) Reynolds stress, and
(d) particle flux. The left and right vertical axes scale amplitude
and phase, respectively.

from the density fluctuation are approximately identical.
For the sake of a better signal to noise ratio, the latter is
used here. The Reynolds stress, i.e., the turbulent momen-
tum flux, in the magnetized plasmas is defined as
M,y = —(E,E,)/B* ~ —k,ky5?/2B%, where (-) shows a
long time averaging. The Reynolds stress modulation by
the GAM is evaluated as 11,y = I1,4(k,/k, + 28/5), which
is shown in Fig. 3(c). Here, the modulation in the poloidal
wave number k, by the modulational coupling is negligibly
small, as is the case in Ref. [21]. In the present case,
|k,|/k, > |S|/S holds. At r —a ~ =3 cm, there is a jump
in the phase profile of I, which produces a large
divergence of the Reynolds stress, i.e., Reynolds stress
force. The turbulence particle flux is defined as
[, = (Epit)/B ~ —iky(¢ ) /B, where i is the imaginary
unit. At the top side of the torus where the sample volumes
of the HIBP are present [Fig. 1(a)], the modulation of the
particle flux is expected to be maximum. Figure 3(d) shows
the GAM modulation component of the turbulent particle
flux normalized by the mean density I, /7i. The phase jump
exists at a different location, r —a ~ —2.5 cm.

It should be mentioned that the LFZF is known to have
an enhanced inertia, which arises from the coupling
with the toroidal flow perturbation. It is estimated as
1+1.6¢°/\/a/R~30 in the banana regime [22].
Therefore, the GAM is allowed to be excited by a 30
times smaller force compared with the LFZF [21].

Here, the energy exchange between the GAM and
turbulence through the Reynolds stress [1] and the dynamic
shearing [13,14] are discussed. The Reynolds stress force
can resonantly oscillate with the E x B flow of the
GAM via the modulational coupling, through which the
turbulence energy is transformed into the GAM energy.
Meanwhile, the GAM can also gain energy from the
particle flux modulation that enhances the density pertur-
bation of the GAM, which is called the dynamic shearing

process. From the model equations [ 14], the rate of change in
the GAM kinetic energy (Kgam = |‘A/EX 5|?) is derived as
KoamO:Kcam = rrs +¥ps =7z, Where ygs and yps
account for the Reynolds stress drive and the dynamic
shearing drive of the GAM, respectively. The linear damping
rate is denoted as y; . In general, an oscillatory force £ drives
the GAM with a rate of y = 2|F||V 5| cos(0r — 0y, ),
where 0p — 0y, =~ is the cross phase between F and
Vexs. The Reynolds stress force and the dynamics
shearing force are given as Frg = —r~'9,r11,5 and Fpg =
ic2/ (42 famR)r™10,r(I", /1), respectively. The equilib-
rium density gradient is expected to be weak enough in
r —a < —1.5 cmfor neglecting the 9,71 term. For estimating
the dynamic shearing force, the poloidal mode structure of
the particle flux modulation is essential, but it is unknown.
Here, we follow a theoretical assumption [14], in which the
particle flux modulation is regarded to have the up-down
asymmetry, as synchronizing the density perturbation.
A finite phase difference between the particle flux modula-
tion and the density perturbation lessens the dynamic
shearing force. Therefore, the evaluation here gives the
largest possible evaluation of the dynamic shearing force.
Figure 4 shows the amplitude and phase of the evaluated
force, as well as the expected growth rates induced by the
Reynolds stress force and the dynamic shearing force. The
present evaluations are given based on the conditional
averaged profiles of the amplitude and phase that corre-
spond to the saturation phase of the GAM activity. A local
maximum in |Fgg| appears where the jump in the phase
profile of f[,,g exists, at r —a ~ —3 cm. Around the peak,
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FIG. 4. Radial profiles of (a),(b) the modulation amplitude, (c),
(d) the modulation phase, and (e),(f) the expected growth rate for
the Reynolds stress force and dynamic shearing force, respec-
tively. An effective growth rate evaluated from the time evolution
of the GAM Kkinetic energy is overplotted in (e).
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the phase difference between the force and the
flow becomes zero. As a result, a local peak of
Yrs ~ 3 x 10* s~ emerges at r — a ~ —3 cm in the profile.
In the outer radii of the peak, r — a > —3 cm, the growth
rate becomes negative; i.e., a nonlinear damping of the
GAM is expected. Although the energy input into the GAM
is localized, the eigenmode has a wider radial structure. A
similar observation, a localized energy input that excites a
global LFZF, was reported in a cylindrical plasma column
[23]. In contrast to yrs, ¥ps 1S insignificant in the entire
peripheral region. Note again that the present value of ypg is
given as the largest possible evaluation. The collisionless
damping (Landau damping) rate [16] and the collisional
damping rate [18] are given as ypangau ~ 1 X 10* s7 and
Yeol ~ 50 s7!, respectively. The linear damping rate is
slightly smaller than the expected growth rate. The evalu-
ated growth rate is therefore considered to be sufficiently
large to account for the GAM growth. The nonlinear
saturation mechanism of the GAM, which can be assessed
based on the higher harmonics of the GAM spectrum [17],
will be the subject of future study. An effective growth rate
can be directly evaluated from the time evolution of the
GAM kinetic energy Kgam. During the time frames in
which Kgay increases through a threshold value, yi . is
defined as Kghy0,Kgam. The radial profile of ensemble
averaged yg . is overplotted in Fig. 4(e). Since the GAM
has a wider eigenfunction, yg,,, shows a flat profile.
Overall, the effective growth rate of ~3 x 10* s~! is on the
same order as ygs-

The growth rate induced by the Reynolds stress force yrg
in Fig. 4(e) peaks at the radius where the skewness is
around zero [Fig. 2(c)]. Beyond the models describing the
GAM spatial structure [15], we attempt to interpret this
coincidence. At the location where the net growth rate is
zero or negative, local growth of the GAM is prohibited.
Therefore, a finite GAM component in these locations can
be regarded as a portion spatially transmitted by forming an
eigenmode structure or by a radial propagation. These
portions can have a different statistical property from the
locally excited component. The skewness profile implies
that the local growth and decay of the GAM follow
Gaussian statistics, while the spatially transmitted portion
involves positive spikes. An analogy can be found in
models of the blob filament dynamics in the scrape-off
layer plasmas [24].

In summary, we investigated spatial structures of turbu-
lence and turbulent transport modulated by the geodesic
acoustic mode, from which nonlinear interplays between
the GAM and turbulence were discussed. The GAM was
found to be predominantly excited through a localized
Reynolds stress force, rather than the dynamic shearing
force. The magnitude of the energy input into the GAM was
considered to be sufficiently large, as to dominate linear
damping terms.
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