
 

Higher-Dimensional Caustics in Nonlinear Compton Scattering

Vasily Yu. Kharin,1,* Daniel Seipt,2,3,† and Sergey G. Rykovanov1,‡
1Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany

2Lancaster University, Physics Department, Bailrigg, Lancaster LA1 4YW, United Kingdom
3Cockcroft Institute, Daresbury Laboratory, Keckwick Ln, Warrington WA4 4AD, United Kingdom

(Received 15 August 2017; published 26 January 2018)

A description of the spectral and angular distributions of Compton scattered light in collisions of intense
laser pulses with high-energy electrons is unwieldy and usually requires numerical simulations. However,
due to the large number of parameters affecting the spectra such numerical investigations can become
computationally expensive. Using methods of catastrophe theory we predict higher-dimensional caustics in
the spectra of the Compton scattered light, which are associated with bright narrow-band spectral lines, and
in the simplest case can be controlled by the value of the linear chirp of the pulse. These findings require no
full-scale calculations and have direct consequences for the photon yield enhancement of future nonlinear
Compton scattering x-ray or gamma-ray sources.
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The ongoing interest in a precise theoretical description
of nonlinear Compton scattering—the scattering of intense
laser light off an electron beam—is nowadays driven by the
prospects of using it as a source of collimated, ultrafast,
tunable, bright, and narrow-band x rays and gamma rays
[1–8]. While the basic mechanism for the hard photon
production is a Doppler up-shift of the laser frequency, an
accurate description of the backscattered spectrum, and
hence the source’s properties, requires us to take into
account, apart from the electron beam properties, also the
laser pulse intensity, shape, and potential frequency modu-
lation (chirp). Because the number of scattered photons is
proportional to a20 ¼ 0.73I18λ2μm, where I18 is the peak laser
pulse intensity in units of 1018 W=cm2 and λμm is the
central wavelength in microns, the laser pulse intensity
should be as large as possible to maximize the photon yield.
However, the interaction becomes nonlinear when a0 ≳ 1.
Apart from the up-shifting of the scattered radiation
frequency, there is also an intensity-dependent redshift,
which is, in the classical picture, caused by the longitudinal
drift due to the v ×B force [9–11]. This “slows” the
electron down relative to its initial velocity. While in the
case of a monochromatic plane wave the drift is uniform
and the redshift is constant, the presence of an envelope of
the laser pulse implies a time dependence of the Doppler
shift. Hence, the so-called ponderomotive broadening of
the spectral lines appears, preventing a narrow bandwidth
and posing a severe limitation on the brightness of high-
intensity Compton sources [12–15].
In order to operate narrow-band Compton sources one

either has to limit the allowed laser intensity [9,16], or
employ more advanced schemes with a frequency modu-
lated (chirped) laser pulse. In the latter approaches a time-
dependent frequency blueshift of the laser light mitigates

the ponderomotive redshift [12]. In Refs. [13–15] an
optimal chirping prescription has been derived by thor-
oughly analyzing theoretically the nonlinear Compton
spectrum with chirped laser pulses. For optimal chirping
the ponderomotive broadening is compensated completely,
allowing narrow-band Compton sources even in the non-
linear regime a0 ≳ 1. Unfortunately, the optimal chirp is a
complicated nonlinear function of the laser phase, which
might be hard to realize experimentally.
For practical purposes it is therefore important to

investigate chirping schemes that are not perfectly optimal,
but still significantly reduce the source bandwidth and
increase its brightness. The problem is that every particular
combination of envelope and frequency profiles of the laser
pulse requires separate calculations. As a result, the
question of the interrelation between the properties of
the incident pulse and the frequency-angular distribution
of the scattered radiation is very complicated. Only a very
limited amount of closed form analytical solutions exist for
finite laser pulses [10,11,17], typically employing the
stationary phase method. This is the reason why expensive
numerical investigations [18] and parameter surveys are
typically required in order to find promising combinations
of pulse shape and frequency modulation.
In this Letter, the theory of singularities of differentiable

projection maps—also called catastrophe theory—is
applied to the stationary phase picture, turning it into a
powerful tool for theoretical investigations of the nonlinear
Compton spectra. It is known from diffractive optics that
the singularities, or caustics, are inherently related to the
focusing of light, with a universal diffraction pattern near
the caustics [19]. In our case spectral intensity can be
focused causing narrow spectral peaks in the vicinity of
spectral caustics [20,21]. We use this approach here to
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identify higher-dimensional caustics that are used to predict
bright and narrow spectral peaks. We investigate in detail
the case of a linearly chirped laser pulse and find pairs of
cusp caustics connected by two folds. Their disappearance
with increasing chirp provides a so-called lips caustic
[19,22,23]. The cusps evoke bright and narrow-band peaks
in the spectrum that can be tuned by adjusting the linear
chirp of the laser pulse. Thus, the investigation of spectral
caustics can serve as a useful technique applicable to the
design of the optimization schemes for Compton scattering
x-ray and gamma-ray sources, guiding and complementing
full-scale numerical simulations. Throughout the Letter we
use units with ℏ ¼ c ¼ 1 and dimensionless spacetime
(xωL;0 → x) and energy (ω=ωL;0 → ω) variables by rescal-
ing with the central laser frequency ωL;0.
The fundamental theoretical investigation of nonlinear

Compton scattering started with the seminal works of
Nikishov and Ritus back in the 1960s [24,25] with pulse
shape effects included later on [26–30]. We shall briefly
recall it here: nonlinear Compton scattering is described as
a first-order strong-field QED process in the Furry picture.
A photon is emitted by an electron dressed by a plane wave
background laser field with vector potential A, which is
made dimensionless by the rescaling eA=m → A. Here, e
and m are the electron absolute charge and mass, respec-
tively. In the Furry picture, the laser-dressed electrons are
described as Volkov spinor wave functions Ψp;σ [31],
which are solutions of the Dirac equation with asymptotic
four-momentum p and spin polarization σ.
The corresponding S-matrix element is given by

S1 ¼ −ie
Z

Ψ̄q;σ0 ðxÞ=ε�eiκ·xΨp;σðxÞd4x: ð1Þ

Here, ε is the polarization vector of the scattered photon;
κ ¼ ðω; κÞ is its four-wave vector. To simplify the expres-
sions we consider the frame of reference where the electron
is initially at rest, p ¼ ðm; 0; 0; 0Þ; we will refer to it as the
electron frame, in contrast to the lab frame, where the
electron is initially counterpropagating the laser pulse with
energy γm. The laser pulse is propagating in the z direction
and its vector potential depends only on the light-front time
ϕ¼ t−z. We therefore also introduce the light-front com-
ponent of the scattered photon momentum κ−¼ω−κ3. The
notation κ⊥ refers to the projection of the three-vector κ on
the (x, y) plane.
By squaring the S matrix, averaging over the initial

electron spin states, and summing over the polarizations of
outgoing photon and electron, the differential photon
emission probability is given by [17]

dW
dωdΩ

¼ e2ω
64π3mðm − κ−Þ

1

2

X
εσσ0

jMεσ0σj2: ð2Þ

For a slowly varying laser pulse envelope the transition
amplitudeMεσ0σ can be represented as a sum over harmonics
by using a generalized Jacobi-Anger expansion [32],

Mεσ0σ ¼
Xþ∞

n¼−∞

Z þ∞

−∞
Bn
εσ0σðϕÞ

×exp

�
i
Z

ϕ

0

ωþκ−aðξÞ2=4
1− κ−

m

−nωLðξÞdξ
�
dϕ; ð3Þ

which is the basis for all further analysis. Here, the laser
pulse is parametrized as A¼(axðϕÞcosχL;ayðϕÞsinχL;0)
with instantaneous frequency ωLðϕÞ, phase χLðϕÞ ¼R ϕ
0 ωLðξÞdξ, and envelope aðϕÞ ¼ (axðϕÞ; ayðϕÞ; 0) with
the possibility for a time-dependent ellipticity [35].
Because the amplitudes for each harmonic Bn

εσ0σðϕÞ are
slowly varying functions of ϕ [32], the value of the integrals
in Eq. (3) can be estimated using the stationary phase
approximation. Since the azimuthal direction of the emitted
photon only affects the prefactors Bn

ϵσσ0 , for the stationary
phase analysis we can restrict ourselves to considering only
one component of κ⊥, say, κx, assuming κy ¼ 0. The
stationary phase condition defines the so-called ray surfaces
for the nth harmonic in the (κx, κz, ϕ) space:

Fðκx;κz;ϕÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2xþ κ2z

q �
1þ

�
a2ðϕÞ
4

þnωLðϕÞ
m

��

−κz

�
a2ðϕÞ
4

þnωLðϕÞ
m

�
−nωLðϕÞ¼ 0 ð4Þ

with n being an integer number. For a fixed value of ϕ
Eq. (4) defines a set of ellipses in the (κz, κx) plane for each
harmonic, the size and eccentricity of which change
continuously with ϕ.
The projection of the ray surface F on the (κx, κz) plane

[Fig. 1(b)] defines the region of frequencies and angles
where the scattered radiation will not be suppressed by
rapid oscillations in the integrals in Eq. (3). This situation is
similar to the one known in the catastrophe optics. The
values of κx and κz play the role of control parameters, and
the underlying integrals can be evaluated using the proce-
dures similar to calculating diffraction patterns. The regular
points of the projection map, where ∂F=∂ϕ ≠ 0, contribute
to the spectrum with the amplitudes defined by the sta-
tionary phase approximation. In contrast to that, the
singular points of the map, where ∂F=∂ϕ ¼ 0, are pro-
jected on the caustic set, and their contributions require
higher-order corrections to evaluate the integrals in Eq. (3).
According to Thom’s classification [36], there are only

two types of stable singularities in systems with two control
parameters. These are folds and cusps, see Fig. 2. In the
vicinity of fold caustics the evaluation of the integrals in
Eq. (3) yields Airy functions, while the cusp caustic (where
also the second derivative of the ray surface vanishes)
corresponds to the Pearcey integral [37]. In order to trace
how these different caustics govern the Compton spectra let
us consider two examples: a quasimonochromatic laser
pulse and a linearly chirped pulse, both with circular
polarization, i.e., ax ¼ ay.
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For the quasimonochromatic pulse the frequency is
constant, ωLðϕÞ ¼ const, and the only type of caustic
arising in the scattered spectrum is the fold caustic
(Fig. 1, left column). The condition for the fold singularity
on the ray surface is da2=dϕ ¼ ½a2�0 ¼ 0. That is, a fold
corresponds to an extremum in the pulse envelope, and to
the peak in the scattered spectrum [26]. For a simple laser
pulse with a single maximum in the envelope [38], the peak
position is a function of the scattering angle θ given by

ωfðθÞ ¼
nωL

1þ ð1 − cos θÞða20
4
þ nωL

m Þ
; ð5Þ

where a20 ¼ maxϕa2. In the vicinity of ωfðθÞ, the spectrum
has the form of Airy functions and we see agreement with

the well-known theoretical predictions on the interference
structure of the scattered radiation caused by two stationary
points [14,26,39].
Let us now turn to the case of a linearly chirped pulse

where we find not only folds to contribute to the spectrum,
but also higher-dimensional cusps. For a linearly chirped
laser pulse the instantaneous frequency varies with time
according to ωLðϕÞ ¼ ωL;0 þ βϕ=τ with the linear chirp
parameter β determining the rate of change of the frequency
over the pulse duration τ. In this case, the locations of the
singularities of the ray surface (4) are given by the conditions

κ−
½a2ðϕÞ�0

4
¼ n

β

τ

�
1 −

κ−

m

�
; ð6Þ

½a2ðϕÞ�00 ¼ 0; ð7Þ

where Eq. (6) defines the loci of the folds for the chirped
pulse and Eq. (7) determines their coincidence, defining the
cusp singularity.
The typical situation with cusp-type singularities is

illustrated in Fig. 1 (right column). For small values of
chirp β there are two cusps for opposite values of κx,
connected by two folds. For large values of β there are
neither cusps nor folds. It can serve as the evidence of a
higher-dimensional caustic taking place in between. In this
situation we consider the chirp β as an additional control
parameter, and the caustic consists in the coincidence of
two cusps and their disappearance for increasing β. The
space of control parameters is three dimensional now, and
the described process is referred to as a “lips event” in the
catastrophe theory [23,40], or as the celebrated “Zel’dovich
pancake” [41] in astrophysics. The coincidence of the cusps
happens in backscattering, θ ¼ π, due to the axial sym-
metry of the exponential in Eq. (3), making the lips event
interesting for Compton sources.
From the physical point of view the cusps will result in a

relatively bright narrow spot in the scattered spectrum at the
cusp angle θc (Fig. 1, right column),

FIG. 2. Artistic image of a generic cusp as the singularity of a
two-dimensional map. The projection of the surface to the (x, y)
plane yields two folds (projected on red lines) coinciding and
terminating in the cusp point.

(a)

(b)

(c)

FIG. 1. The ray surfaces [stationary phase condition (4)] (a),
their projections on the (κx, κz) plane (b), and corresponding
numerically calculated spectra (c) in the electron frame: the radial
coordinate is frequency, the angle is θ, and the color is the
emission probability. The laser pulse is circularly polarized with
envelope jaj ¼ a0cos2ðπϕ=τÞ, a0 ¼ 2.1, and τ ¼ 100π=ωL;0,
propagating to the right. Left column: unchirped pulse. Right
column: chirped pulse with β ¼ 0.75.
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cos θc ¼ 1 −
4β

ða2Þ0ωLτ − a2β
; ð8Þ

where a andωL are evaluated at the point defined by Eq. (7).
For θc < θ ≤ π one sees the interference between the three
parts of the pulse, i.e., three stationary points, constrained
by two folds. For θ≃ θc one observes a narrow peak in the
scattered spectrum on top of a weaker pedestal. Beyond θc,
closer to forward scattering, the width of the peak
increases while only a single stationary point contributes.
Equation (8) shows that the locations of the cusps can be
controlled by the chirp parameter β, and, for a Compton
source, the cusp angle should be close to the backscattering
direction θc → π for narrow-band and collimated emission.
To see that, let us now go back to the lab frame.
When going to the lab frame the components of the

photon momentum transform as κ⊥;lab¼κ⊥ and κ−lab¼2γκ−,
causing the ellipses in Fig. 1 to expand (contract) in the −z
(þz) direction and the scattering angles θ to narrow towards
the backscattering direction. The Jacobian of the Lorentz
transformation J ¼ 1=½γð1þ β cos θlabÞ� strongly enhances
the on-axis backscattered radiation close to θlab ¼ π (and
suppresses forward scattering), causing the strongest emis-
sion to be not exactly at the cusp position where emission is
very narrow band (star marker), but for angles θlab > θc;lab.
As one can clearly see in Fig. 3 this forces the emitted
radiation to be strongly confined to the caustic region
bounded by the two folds and the cusp. With increasing
chirp β, the cusp is pushed towards the beam axis,
pinching the folds and turning the emitted radiation into
a collimated beam with enhanced spectral intensity and
narrow bandwidth.

Figure 4 shows the on-axis emission probability as a
function of different values of the chirp β (vertical axis),
with the lips event; i.e., the coincidence of the cusp
singularities on axis is depicted with a star at βc ¼ 0.24
[32]. The pinching of the two folds with increasing β < βc
evokes a bright on-axis emission peak with a minimal
bandwidth of 2.5% (FWHM) and the peak height more than
doubled as compared to the unchirped case. The optimal
chirp for this is βpeak ¼ 0.18 for a0 ¼ 1, which can be
determined by analyzing the Pearcey diffraction pattern in
the vicinity of the cusps [32]. The required values of β can
be realized with a relative laser bandwidth of 0.18 and a
second order spectral phase (group delay dispersion) of
φ00 ≈ 40 fs2, which can be achieved with today’s laser
technology [42]. Note that the developed approach is not
constrained to the linear chirp only. Higher order chirping
can be incorporated by additional control parameters,
which can provide a higher degree of degeneracy of the
stationary phase points, and a stronger radiation enhance-
ment. It also provides new types of catastrophes, leaving
the caustic analysis simple, but making the direct numerical
parameter surveys very demanding [32].
In conclusion, in this Letter we applied the theory of the

singularities of differentiable projection maps and caustics
to analyze nonlinear Compton scattering spectra for short
pulses with a variable pulse shape and chirp. The caustics
are related to patterns in the nonlinear Compton spectra,
which greatly simplifies the qualitative analysis of the
spectra, and the inverse problem of tailoring laser pulses for
the optimized narrow-band spectra.
We predict cusp singularities in the scattered spectrum

for linearly chirped laser pulses and show that the location
of the cusps can be tuned by the value of the linear chirp.
The emitted radiation is effectively confined to the region

FIG. 4. The on-axis photon emission probability in the lab
frame as a function of photon frequency and chirp parameter β
shows the two folds (dashed curves) terminating in a cusp (star).
In the vicinity of the cusp we see the typical Pearcey-integral
pattern [23]. The spectrum (horizontal lineout) turns into a single
narrow-band peak for a relatively large range of β values in the
vicinity of the cusp (see inset). The pulse shape is jaj ¼
a0= coshðϕ=τÞ with τ ¼ 40π=ωL;0 and a0 ¼ 1.

FIG. 3. Frequency-angle differential emission probability in the
lab frame. The initial Lorentz factor of the electron is γ ¼ 1000;
the pulse shape is jaj ¼ a0= coshðϕ=τÞ; τ ¼ 40π=ωL;0, a0 ¼ 1,
and the chirp parameter β ¼ 0.15; θ̄lab ≔ π − θlab. The on-axis
radiation is Doppler up-shifted fromωL;0 ¼ 1.55 to≈4 MeV, and
strongly enhanced. The emitted radiation is effectively confined to
the region bounded by the two folds and the cusp. Pushing the
cusp closer to the axis by increasing β will constrain the radiation
to a narrow bandwidth and well collimated beam of gamma rays.
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formed by the cusp and fold caustics. When the cusps are
pushed close to the beam axis by tuning the chirp, the
emitted radiation is pinched between two folds evoking
bright narrow-band and collimated emission of gamma
rays. The spectral caustics investigated in this Letter also
provide a different view on the optimal chirping schemes
for spectral bandwidth reduction [13–15,32].
The stability of caustics makes the provided analysis

insensitive to the small variations of pulse properties, and
electron beam effects, which is important for practical
applications. This new perspective on the nonlinear
Compton spectra can serve as a tool to design and optimize
upcoming x-ray and gamma-ray Compton backscattering
sources, guiding and complementing full-scale numeric
simulations. Moreover, the method applied in this Letter
can be also used for other processes of strong-field QED
like nonlinear Breit-Wheeler pair production.
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