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We investigate the quantum entanglement of the three modes associated with the three-photon states
obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although
the second-order processes have been extensively dealt with, there is no direct analogy between the second
and third-order mechanisms. We show, for example, the absence of quantum entanglement between the
quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However,
we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.
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Introduction.—Twin-photon states have deeply influ-
enced the history of quantum optics and are the main
ingredient in several quantum protocols. Their ubiquity
contrasts with the case of triple-photon states (TPS). The
unique quantum properties of TPS were anticipated in the
seminal paper on GHZ states [1]. Their tripartite entangle-
ment is identified as a direct way to contradict local realism
theory for nonstatistical predictions of quantum mechanics.
Later on, W states have been predicted to retain maximally
bipartite entanglement when any one of the three qubits is
traced out [2]. Very recently, anisotropy was identified as a
new invariant for pure three-qubit states and was found
identical for each of their pairs, opening several promising
applications [3]. More generally, one can expect that TPS
plays in quantum optics a similar role as twin-photon states
did over the last 40 years and allow the development of novel
and efficient quantum protocols based on triple-photon
entanglement or announced entangled twins. This is pro-
vided that clever optimization of bothmaterial and nonlinear
interaction is achieved to overcome the weakness of third-
order nonlinear processes. Until now, only configurations
based on second-order nonlinear interactions have suc-
ceeded in producing TPS [4–8] at the expense of increased
complexity, low efficiency, or detection conditioned proto-
cols preventing their use. In the continuous variable (CV)
domain, tripartie full inseparability was demonstrated by
Aoki et al. in 2003 [9] using linear optics and squeezed
states. Very recently, an important stepwas accomplished by
Armstrong et al., demonstratingCVTPS exhibiting genuine
three-body entanglement [10]. However, the most direct
way to produce TPS is in pure χð3Þ materials, in which a
pump photon ℏωp is down-converted simultaneously into a
triplet ℏω1, ℏω2, and ℏω3 with the subsequent energy
conservation, ℏωp ¼ ℏω1 þ ℏω2 þ ℏω3, and momentum

conservation ℏk⃗p ¼ ℏk⃗1 þ ℏk⃗2 þ ℏk⃗3. In the degenerate

configuration, χð3Þ-based TPS exhibit negativities in the
Wigner function [11], signature of non-Gaussian statistics,
constituting a real asset over TPS obtained by cascaded χð2Þ
interactions and linear optics. Only one experimental dem-
onstration of triple-photon generation (TPG)was reported in
the regime of bistate seeding; i.e., two of the three fields
associated with the outcoming component of the triple-
photons are injected together with the pump field [12]. This
pioneering work clearly demonstrates a phase-matched
third-order nonlinear process. Its transposition to sponta-
neous down-conversion is, however, precluded by the small
χð3Þ value. For instance, in the fluorescence regime, less than
0.01 triplet per day is expected [11]. There is an active
research for novel materials and geometrical configurations
pushing nowadays the efficiency of the reverse nonlinear
process, namely third-harmonic generation, from bulk to
waveguide operation [13–16]. One can reasonably conjec-
ture this will contribute to increased TPG efficiency as
predicted by semiclassical theories [17–19]. However, one
canwonder if our comprehension at the quantum level of the
process is sufficient to optimize the interaction. Until now,
this optimization is strongly driven by the analogy with the
well-known and largely investigated χð2Þ process.
In this Letter, we develop a full quantum description of

TPS in the CV domain. To the best of our knowledge, the
CV quantum properties [20] remain unexplored for TPS
generated by a pure third-order nonlinear interaction. We
discuss spontaneous, single, double, and triple-seeded
configurations and demonstrate that using twin-photon
knowledge is often a wrong strategy for TPS optimization.
As a result, no entanglement is found in the spontaneous
emission regime. More importantly, tripartite entanglement
is predicted in the triple seeding configuration and is found
strongly increasing with the seeding, becoming a novel
avenue for TPS optimization.
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The starting point of our theoretical analysis is the
interaction Hamiltonian describing TPG in a χð3Þ material
[21]. It reduces to

Ĥ ¼ ℏκðâ†1â†2â†3 þ â1â2â3Þ; ð1Þ

for a monochromatic strong undepleted classical pump. κ is
proportional to the pump amplitude and to the nonlinear
susceptibility χð3Þ. The annihilation operators âk (k ¼
1; 2; 3) describe the triple photons modes. We now consider
the evolution of the operators in the Heisenberg picture

dâkðtÞ
dt

¼ {
ℏ
½Ĥ; âkðtÞ�: ð2Þ

Let Âk (Â
†
k) be the annihilation (creation) operators of mode

k after the nonlinear interaction. We define the amplitude
and phase quadratures p̂k ¼ Âk þ Â†

k and q̂k ¼ {ðÂk − Â†
kÞ,

satisfying the canonical commutation relations ½q̂k; p̂k� ¼
2{. Their quantum fluctuations are measured with balanced
homodyne detections. By sweeping the phase θk of
the local oscillator, one has access to the generalized
quadratures P̂kðθkÞ ¼ e−{θk Â†

k þ e{θk Âk and Q̂kðθkÞ ¼
P̂kðθk þ π=2Þ. Let us finally define the following linear
combinations:

û ¼ h1P̂1 þ h2P̂2 þ h3P̂3;

v̂ ¼ g1Q̂1 þ g2Q̂2 þ g3Q̂3; ð3Þ

where hk and gk are arbitrary real parameters introduced
experimentally as attenuations or amplifications of the
photocurrents generated by the balanced homodyne detec-
tions. Phase dependence is intentionally omitted in Eq. (3)
for simplicity. We quantify multibody quantum entangle-
ment of TPS using the nonseparability criterion S intro-
duced by van Loock and Furusawa in Ref. [22], defined as

S ¼ hΔû2i þ hΔv̂2i; ð4Þ

which can be measured experimentally using homodyne
detection. Expanding Eq. (4) and using Eq. (3) we find

S ¼
X3

k¼1

h2khΔQ̂2
ki þ

X3

k¼1

g2khΔP̂2
ki;

þ
X3

k¼1

X3

m¼1
m≠k

hkhmðhQ̂kQ̂mi − hQ̂kihQ̂miÞ;

þ
X3

k¼1

X3

m¼1
m≠k

gkgmðhP̂kP̂mi − hP̂kihP̂miÞ: ð5Þ

The two first terms are the sum of the quadrature variances.
The two last describe cross correlations between the output

modes at the origin of the entanglement. Indeed, whereas
the two first terms are always positive, the two last can be
negative and can interfere destructively with the first ones.
The criterion S is a function of hk and gk. If

S < fp ¼ 2ðjhkgkj þ jhlgl þ hmgmjÞ ð6Þ

for a given permutation fk; l; mg of f1; 2; 3g, then the
quantum system is said to be fully inseparable [22]. The
system is at least partially separable if fp ≤ S < fs ¼
2ðjhkgkj þ jhlglj þ jhmgmjÞ. According to [22], the param-
eters hk and gk are chosen such that ½û; v̂� ¼ 0, to allow
S → 0 and the existence of simultaneous eigenstates of û
and v̂. As pointed out by Teh and Reid [23], one has to
distinguish between full inseparability and genuine entan-
glement. They both are equivalent only for pure quantum
states, otherwise, for mixed states, full inseparability is not
a sufficient condition to claim entanglement. One has
instead to fulfill

S < 2 minfjh1g1j þ jh2g2 þ h3g3j;
jh2g2j þ jh1g1 þ h3g3j; jh3g3j þ jh1g1 þ h2g2jg; ð7Þ

to confirm genuine entanglement—condition (18) in [23]—
which is more stringent than criterion (6). In the subsequent
analysis, the boundaries in (6) and (7) are, respectively, 4
and 2 for our chosen û and v̂ quadratures (and hence hk and
gk) in the case of doubly or fully seeded TPG. We can thus
claim genuine entanglement when S < 2 or at least full
inseparability when S < 4.
The determination of S for TPS relies on the resolution of

Eq. (2). Unfortunately, no analytical solutions are known in
the frame of quantum mechanics, though their exact
classical solutions are Jacobi elliptic functions [24].
Here, to obtain an approximate solution of the operators
at a time t, we use the Baker-Hausdorff expansion

Âk ¼ âk þ
X∞

n¼1

ð{ξÞn
n!

Ω̂n;klm; ð8Þ

to a finite order, ξ ¼ κt being the interaction strength and

Ω̂n;klm ¼ 1

ðℏκÞn ½Ĥ; ½Ĥ; ½� � � Ĥ; ½Ĥ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n-times

; âk����; ð9Þ

with fk; l; mg being permutations of f1; 2; 3g. The expan-
sion order of the operators in Eq. (8) is crucial for the
validity of our analysis. It depends on the interaction
strength ξ and on the average photon number of the
seeding. In the following, we will analyze different sit-
uations of TPG expanding Eq. (8) to a finite order and
calculate the criterion S using a combination of both
symbolic and numerical computational methods. For all
numerical analysis we take jξj ¼ 1.75 × 10−6, deduced
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from [24], which is very representative of the third-order
nonlinearity of nowadays materials.
Triple-photon parametric fluorescence.—In the fluores-

cence case, there is no seeding and since jξj ≪ 1, the
expansion is valid at any order. It is well known that
spontaneous parametric down-conversion (SPDC) induces
strong quantum entanglement between the twin modes.
Surprisingly, our analysis shows that spontaneous TPG
does not exhibit such quantum entanglement in the CV
regime for any chosen quadratures û and v̂. The cross
correlation terms in Eq. (5) between the output modes
vanish and S reduces to

S ¼ ð1þ 2hÂ†ÂiÞ
X3

k¼1

ðh2k þ g2kÞ; ð10Þ

when assuming identical average photon number hÂ†Âi in
each mode. The full derivation of Eq. (10) is given in the
Supplemental Material [25]. According to Eq. (10), the
criterion S only depends on hk, gk and on ξ, which is
contained in hÂ†Âi. We compare the result given by
Eq. (10) to the classical limit fs by analyzing the difference
S − fs. After some mathematical manipulations, we end
up with S − fs ¼ 2Γ2hÂ†Âi þP

3
k¼1ðjhkj − jgkjÞ2, where

Γ2 ¼ ðh21 þ h22 þ h23 þ g21 þ g22 þ g23Þ. Each term being pos-
itive, S ≥ fs for any choice of hk and gk. This result clearly
demonstrates that, in contrast to SPDC, the three modes are
fully independent, meaning that their quantum fluctuations
are totally uncorrelated. This result could be easily under-
stood as follows. The triplets are generated from the
vacuum quantum fluctuations as the twins. However, for
a given eigenvalue outcome of the observable, Q̂1 for
example, the two others, Q̂2 and Q̂3, can still take any
random pair of eigenvalues. Each realization is thus
independent from the previous one.
Partially seeded triple-photon generation.—The validity

of our analysis in the seeded cases is discussed in detail in
the Supplemental Material [25]. We show that a sufficient
condition for the expansion to be valid is jξαj ≪ 1, where
N̄in ¼ jαj2 is the incident average photon number per
mode. All subsequent numerical analyses are done using
N̄in ≤ 1011 and a fifth-order expansion of the operators Âk.
The associated errors on the operators is about 6.4% and
even smaller on the estimation of the gains, variances,
and S.
When only one of the three modes is excited by a bright

coherent state jαi containing N̄in photons on average, no
three-body quantum entanglement was found. If, for
example, mode 3 is seeded, we can replace the operator
â3 by its classical field amplitude counterpart {E3, chosen to
be complex for convenience, assuming that E3 is a real
number. The Hamiltonian becomes Ĥð2Þ ¼ {ℏκðâ1â2−
â†1â

†
2Þ, where κ ¼ gE3. It describes SPDC, where a pump

photon is converted into twin photons. In the third-order
configuration, however, the down-conversion process is
proportional to the effective second-order susceptibility
χð3ÞE3, meaning that the efficiency depends on the seed-
ing level.
Figure 1 allows us to analyze the bipartite nonsepar-

ability criterion S for these twins. The magenta continuous
line with the (plus) markers shows S for modes 1 and 2,
using the quadratures û ¼ Q̂1 þ Q̂2 and v̂ ¼ P̂1 − P̂2, as a
function of the seeding average photon number in mode 3.
The quadratures are determined from the exact solutions of
Eq. (2) using Ĥð2Þ. S starts at 4, which is the classical limit,
i.e. the sum of the four quadrature variances, then decreases
as the seeding gets stronger. The gray area beneath S ¼ 2
indicates the quantum region, meaning that the measure-
ment of the quadrature Q̂2 (respectively, P̂2) allows us to
know Q̂1 (respectively, P̂1) better than the standard
quantum limit, the shot noise of a coherent state [26].
Figure 1 shows that the entanglement gets stronger as the
seeding increases. In a sense, the single mode seeded TPG
is a reconfigurable two-body entanglement source where
the seeded mode acts as a control parameter: it changes the
strength of the interaction and selects which quadratures are
entangled depending on the seeding phase. When E3 → 0,
it reaches the fluorescence case, which can be seen as an
effective second-order process driven by the quantum
fluctuations of mode 3. This reasoning helps us to under-
stand the origin of the missing three-body quantum

FIG. 1. Evolution of the nonseparability criterion S as a
function of the seeding average photon number for jξj ¼ 1.75 ×
10−6 and for different injection cases. The gray area highlights the
quantum region of tripartite genuine entanglement. Full insepa-
rability is fulfilled between 2 and 4. The triple-photon generation
boxes show the different schemes with the seeded (full arrows)
and nonseeded (dashed arrows) modes. The S boxes indicate the
modes concerned by the Smeasurement. Magenta line with (plus)
markers: single seeding case. Green line with (times) markers:
double seeding case. Red line with (circle) markers for the fully
seeded at θ1 ¼ 0, θ2 ¼ θ3 ¼ π, and for β ¼ ffiffiffi

2
p

. The phase of the
seeding coherent state is ϕ ¼ π=2. Blue line with (square)
markers: same as the red curve but for quadratures û ¼ Q̂1 þ
Q̂2 and v̂ ¼ P̂1 − P̂2.
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entanglement. Indeed, each eigenvalue resulting from the
measurement of the seeding mode, even at shot noise, will
reset the twin-photon generation process.
The case of two modes seeded TPG, corresponding to

the arrangement described in [24], is analyzed hereafter.
The input state of the system is jψi ¼ j01; α2; α3i. The
most trivial combinations to be considered in Eq. (3) are for
h1 ¼ g1 ¼ 1, h2 ¼ h3 ¼ 1=

ffiffiffi
2

p
, and g2 ¼ g3 ¼ −1=

ffiffiffi
2

p
.

All the local oscillator phases are θk ¼ 0. Any other phase
does not influence the result except by shifting the mini-
mum value of S in the phase space. The chosen parameters
suggest that the noninjected mode 1 is investigated through
the measurement of both seeded modes 2 and 3. The green
line with (times) markers in Fig. 1 represents the corre-
sponding S. Starting at 4, it decreases as the seeding grows,
violating condition (6) and showing that the three modes
are fully inseparable. At N̄in ≃ 2 × 1010, S goes below 2,
indicating genuine tripartite entanglement according to
Eq. (7). In this regime, measuring both modes 2 and 3
is necessary to know mode 1 better than the standard
quantum limit.
Fully seeded triple-photon generation.—This section

focuses on the case where the three modes are initially
excited. The input state of the system is jψi ¼ jα1; α2; α3i.
As for the fully seeded second-order parametric interaction,
it is necessary to consider the phase of the different modes
at the input relative to the pump phase. We consider
identical coherent states seeding the three modes, so that
αk ¼ jαje{ϕ for each mode.
We start by looking at the evolution of the gain

G ¼ N̄out=N̄in, where N̄out ¼ hÂ†
kÂki and N̄in ¼ hâ†kâki

are the output and input average photon number in each
mode. We also calculate the variance of the quadratures P̂k

and Q̂k. Figure 2(a) represents the gain G for N̄in ¼ 4 ×
1010 in polar coordinates as a function of the phase ϕ of the
seeding. It shows amplification ðG > 1Þ and deamplifica-
tion ðG < 1Þ regimes and features three lobs subsequent to
the e{3ϕ dependance of N̄out. The maxima are located at
ϕ ¼ π=2, 7π=6 and 11π=6 corresponding to the phases for

which the down-conversion TPG process ωp → ω1 þ ω2 þ
ω3 is enhanced. The minima are obtained for ϕ ¼ π=6,
5π=6 and 3π=2. Here, it is the sum frequency process ω1 þ
ω2 þ ω3 → ωp which predominates. Figure 2(b) shows the
variances of the quadratures P̂k (red) and Q̂k (blue) in the
same conditions of Fig. 2(a). The most interesting feature,
besides the presence of the three lobes, is that the variances
are always above the shot noise (gray circle) when the
modes are measured separately. This behavior is equivalent
to nondegenerate twin-photon generation where signal and
idler modes exhibit super-Poissonian fluctuations, when
taken separately, and Einstein-Podolsky-Rosen entangle-
ment when combined [26].
Looking for tripartite quantum entanglement, we con-

sider the following particular linear combinations of the
operators of Eq. (3):

û ¼ Q̂1 þ
1

β
ffiffiffi
2

p ðQ̂2 þ Q̂3Þ;

v̂ ¼ P̂1 − β
1ffiffiffi
2

p ðP̂2 þ P̂3Þ: ð11Þ

The extra parameter β allows further optimization. Our
analysis shows that for each phase θ1 of the local oscillator
used for detecting mode 1, there exists a couple of phases θ2
and θ3 for modes 2 and 3 that minimize S. The red line with
(circle) markers in Fig. 1 shows the evolution of S as a
function of N̄in. It is obtained in the amplification regime and
for θ1 ¼ 0 and θ2 ¼ θ3 ¼ π. As the seeding increases, the
red curve goes rapidly below 4, satisfying the full insepa-
rability condition and then goes below2 at N̄in ≃ 1.8 × 1010,
showing genuine three-body quantum entanglement. This
means that a measurement of both modes 2 and 3 is
necessary to gain information on mode 1 better than the
shot noise limit. Indeed, if one tries to determine mode 1
using only mode 2, for example, through the quadratures
û ¼ Q̂1 þ Q̂2 and v̂ ¼ P̂1 − P̂2, thenS > 2, as shown by the
blue line with (square) markers in Fig. 1.
The feasibility and the likelihood of reaching the

quantum level is an important aspect. The parameters
considered in these calculations are compatible with
existing experimental results at the classical level for bulk
materials of [24], from which the interaction strength jξj ¼
1.75 × 10−6 is deduced. Moreover, the seeding average
photon number in our calculations is 2 orders of magnitude
smaller than in [24]. Concerning the crucial issue of losses,
which degrade the quantum correlations, they are discussed
in the Supplemental Material [25]. They are modeled by
beam splitters with a transmission coefficient T ¼ η in front
of ideal detection systems, where η is the overall quantum
efficiency per mode. We show for the fully seeded TPG,
genuine tripartite entanglement preservation up to 38%
losses per mode. Such robustness against losses is due to
the excess noise of the three modes as depicted in Fig. 2(b).
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FIG. 2. Gain (a) and P̂k (red) and Q̂k (blue) variances (b) as a
function of the phase of the seeding fields, for jξj ¼ 1.75 × 10−6

and N̄in ¼ 4 × 1010. The gray circles indicate the unity gain in (a)
and the standard quantum limit in (b).
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Conclusion.—In our analysis of parametric TPG, some
counterintuitive results are found when comparing with the
well-known twin-photon second-order equivalent. The first
counterintuitive result is obtained for the pure spontaneous
case for which we demonstrate the lack of tripartite
quantum entanglement. The more important finding is
for the fully seeded TPG. It exhibits a phase-dependent
gain, behaving similarly to the well-known second-order
phase-sensitive parametric amplifier. But it also appears as
an efficient way to generate genuine tripartite CV quantum
entanglement. An additional property corresponds to the
increase in efficiency with the amplitude of the seeding.
Finally, our pure triple-photon generation approach for
generating TPS is done in a traveling wave configuration
which is very practical for subsequent quantum information
protocols. Moreover, it is more robust against losses than
the χð2Þ-based TPS. Indeed, instead of using squeezed
beams, we deal with super-Poissonian states known to be
very insensitive to optical losses. In conclusion, this three-
body genuine quantum entanglement based on a true triple-
photon generation constitutes a real asset for a new
generation quantum cryptography and other quantum
information protocols based on multipartite entanglement.
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