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We compute corrections to the gyromagnetic factor of an electron bound in a hydrogenlike ion at order
α2ðZαÞ5. This result removes a major uncertainty in predictions for silicon and carbon ions, used to
determine the atomic mass of the electron.
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The Dirac equation predicts the gyromagnetic factor of a
pointlike electron to be g ¼ 2. However, even in vacuum,
self-interaction of the electron modifies its g. The deviation
from Dirac’s prediction, a dimensionless number known
as g − 2, can be computed in QED and expressed as a
perturbation series in the fine-structure constant α ¼
1=137.035 999 139ð31Þ [1]. This research program earned
the 1965 Nobel Prize [2] and has led to the stunning five-
loop prediction of order ðα=πÞ5 [3]. In another heroic
development, the four-loop term has been calculated with
very high precision [4]. On the experimental side, precision
is so high that the electron g − 2 is currently the best source
of α [5].
When the electron is bound in an atom, the presence of

the electrically charged nucleus also influences the g factor.
This matters greatly for studies of trapped ions. The g factor
has been precisely measured in a range of hydrogen-,
lithium-, and boronlike ions [6–13]. This experimental
enterprise holds great potential for the determination of
fundamental constants and tests of the standard model
because of the variety of systems that can be measured [14].
Access to nuclei with diverse values of the atomic number
Z, and multiple electronic configurations for a given Z,
helps eliminate uncertainties. Already now the hydrogen-
like carbon (combined with silicon) provides the most
precise value of the electron mass [15,16]. In the future,
also the fine-structure constant might be determined inde-
pendently from the theory and measurements of the free-
electron g − 2 [17–19].
The leading binding effect on g in a hydrogenlike ion,

related to the electron’s motion, is known to all orders in
Coulomb interactions between the electron and the nucleus
[20]; with αZ ¼ Zα,
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In our notation gða;bÞ, a denotes the power of α=π and b, if
present, the power ofαZ. Considered together, self-interaction

and binding effects are described by a double expansion
in α=π and αZ.
At one-loop level of self-interaction, g is known ana-

lytically including the very recently computed terms of
order ðα=πÞα5Z [21]. Higher order terms in αZ have been
computed numerically [22]. Numerical methods work
especially well for highly charged ions but struggle for
low values of Z. On the other hand, the perturbative
series in αZ behaves best at small Z. Thus analytical and
numerical methods are complementary.
There is a slight tension between the two approaches.

Corrections of O½ðα=πÞα5Z� arise from diagrams similar to
Fig. 1(a), with a single self-energy (SE) loop. For an nS
state (n is the principal quantum number) they are
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FIG. 1. Examples of new contributions to the g factor at order
α2α5Z. Coupling of the external magnetic field is denoted with a
circled cross. (a) SE: one of about 100 two-loop self-energy
diagrams; (b) LBL: light-by-light scattering; (c,d) MLPH,MLVP:
corrections to the so-called magnetic loop with a virtual photon
and a vacuum polarization.
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This result, first obtained in Ref, [21], is hereby confirmed.
It agrees with the coefficient 23.6(5) found numerically
[22] for the ground state n ¼ 1. However, Ref. [22] finds a
slight deviation from the scaling 1=n3, contrary to Ref. [21]
and us. This seems to indicate a poorer convergence of the
numerical calculation than assessed in Ref. [22].
Two-loop self-interactions are significantly more chal-

lenging. Numerically, they are known for the Lamb shift
[23,24], but for the g factor only some classes of diagrams
have been evaluated [25]. Analytical results are known for
the full set of two-loop terms up to ðα=πÞ2α4Z [26,27] and
for some vacuum-polarization diagrams [28].
Effects of O½ðα=πÞ2α5Z� are becoming important for the

determination of me. Since g enters linearly in the master
formula forme [15,16], the relative error in g enters directly
into the uncertainty of me. Numerically, ðα=πÞ2α5Z=ðg ¼ 2Þ
is 4 × 10−13 for carbon and 3 × 10−11 for silicon. The
current relative error in me is 3 × 10−11. Further improve-
ments of me hinge on the knowledge of the coefficient
of ðα=πÞ2α5Z.
In the latest determination of me [15,16], that coefficient

andme were treated as two unknowns and were fitted to the
two available results for g, in H-like carbon and silicon.
(This illustrates opportunities offered by systems with
various values of Z.) To this end, two-loop corrections
were assumed to have the following expansion in αZ:
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The fit performed in Refs. [15,16] resulted in b50ðfitÞ ¼
−4.0ð5.1Þ. Here, we directly determine contributions to b50
beyond the already known vacuum-polarization effects bVP50
[25,28]. Wewrite b50 ¼ bVP50 þ Δb50 and set out to compute

Δb50 ¼ bSE50 þ bLBL50 þ bML
50 ; ð4Þ

where the various terms originate with Feynman diagrams
shown in Fig. 1.
Numerically, the largest contribution to b50 has been

expected from bSE50 , generated by two-loop self-energy
diagrams Σð2Þ. They correspond to the 19 diagrams con-
tributing to the Lamb shift at Oðα2α5ZmeÞ [29–31] (see, for
example, Fig. 2 in Ref. [31]). Each such diagram has five
virtual electron propagators as well as external electron
lines, all of which can interact with the magnetic field.
Thus, we must compute more than 100 diagrams, one
example of which is Fig. 1(a).
The α5Z corrections require at least two photons to be

exchanged between the electron and the nucleus. The
leading contribution arises when the momentum flowing
in all three loops is of the order of the electron mass [rather

than, for example, OðαZmeÞ or Oðα2ZmeÞ, characteristic
for so-called soft and ultrasoft effects]. In this so-called
hard region, exchanges of additional Coulomb photons are
suppressed by αZ so there is no need to resum them. The
contribution is local from the perspective of the long-
distance atomic scale set by the Bohr radius ∼ð1=αZmeÞ
and can be modeled by a Dirac delta potential. Corrections
to this approximation are expected to be powers and
logarithms of the ratio of the Compton wavelength of
the electron and the Bohr radius, OðαZÞ.
The contribution of such a short-distance potential to

the g factor equals 4=me times its expectation value (its
contribution to the Lamb shift) [32]; the same result follows
from virial relations [33]. Using the Lamb shift result [31],
we find (for the ground state 1S, all our results can be
generalized to nS states by dividing by n3)

gSE;Lamb ¼ −9.83426ð5Þα2α5Z: ð5Þ
The uncertainty in this result comes from numerical errors
in the master integrals computed in Ref. [31]. They affect
all quantities we compute below using these three-loop
integrals.
Self-energy diagrams influence g also in two other ways.

Their value depends on the energy of the electron, and that
energy is shifted by the external magnetic field B by
δE ¼ −gðq=2meÞhsi · B. The resulting correction to g is
called g3 in the notation of Ref. [21],

g3 ¼ g
∂Σ
∂E

����
E¼me

¼ gð1Þ3 þ gð2Þ3 ; ð6Þ

where gð1Þ3 arises from the energy derivative of the
one-loop self-energy multiplied by Schwinger’s correction
Δg ¼ ðα=πÞ,

gð1Þ3 ¼
�
4 ln 2 −

659

64

�
α2

π
α5Z; ð7Þ

and gð2Þ3 arises from the two-loop self-energy times the
lowest order g → 2.
Also the wave function of the electron is modified by the

magnetic field. This effect, together with the coupling of B
inside self-energy diagrams like in Fig. 1(a) provides the
last SE correction g4.

To evaluate the three-loop diagrams required for gð2Þ3 and
g4, we use the approach developed for the Lamb shift [31].
All three-loop diagrams are expressed in terms of 32 master
integrals with the so-called Laporta algorithm [34,35]
implemented in the program FIRE [36]. Results for the
master integrals and details of their computation can be

found in Ref. [31]. Separately gauge-dependent, gð2Þ3 and g4
add up to give a gauge-invariant result,

gð2Þ3 þ g4 ¼ 12.816667ð72Þα2α5Z: ð8Þ
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The total SE correction is the sum of Eqs. (5), (7), and (8),

gSE ¼ 0.58735ð9Þα2α5Z: ð9Þ

We note the remarkable cancellation of sizable partial
contributions to gSE in this sum.
The next correction comes from light-by-light scattering

diagrams, one example of which is Fig. 1(b). They can be
viewed as a term in the external-field expansion of self-
energy diagrams with a vacuum-polarization insertion. In
principle, they can be calculated numerically along the lines
of Ref. [25]. However, the numerical treatment of virtual
(unbound) electrons is challenging. Thus, we include them
here in the same manner as the SE corrections, again
considering their Lamb-shift contribution and its energy
dependence. Together with the direct magnetic field cou-
pling effect, we find

gLBL ¼ −0.1724526ð1Þα2α5Z: ð10Þ

Diagrams with the external magnetic field coupling to
the virtual electron loop are expected to be small [25].
In this class, we consider only the so-called magnetic
loop contributions [37], examples of which are shown in
Figs. 1(c) and 1(d). Their origin and evaluation differs from
the diagrams we have discussed so far. Rather than
modifying the response of the electron to a given external
magnetic field, they represent the modification of the
strength of the magnetic field caused by the electrostatic
field of the nucleus.
There are three types of corrections to the leading-order

magnetic loop result ΔgML ¼ 7
216

αα5Z found in Ref. [37].
Like in Eq. (7), there is a one-loop SE correction on the
main electron line that provides

gMLSE ¼ 7

432

α2

π
α5Z: ð11Þ

Diagrams with a virtual photon inside the electron loop,
see, for example, Fig. 1(c), give

gMLPH ¼
�
−

7543

16200
−
303587

10125π
þ 92368

2025π
ln 2

�
α2α5Z: ð12Þ

The third magnetic-loop contribution comes from inserting
a second electron loop in one of the Coulomb-photon
propagators, as in Fig. 1(d),

gMLVP ¼
�

628

8505π
−

1

54

�
α2α5Z: ð13Þ

The total magnetic-loop correction is the sum of Eqs. (11),
(12), and (13),

gML ¼ 0.064387 � � � α2α5Z; ð14Þ

a small effect, as expected [25]. Finally, we sum Eqs. (9),
(10), and (14) and get the total new correction

Δgð2;5Þ ¼ 0.479287ð90Þα2α5Z; ð15Þ

or, equivalently, a new contribution to b50, defined in
Eq. (4),

Δb50 ¼ 4.7304ð9Þ: ð16Þ

The error estimate in this coefficient refers to the numerical
uncertainty in the three-loop master integrals. We estimate
the additional error due to the yet uncalculated vacuum-
polarization (VP) diagrams at about 13% of the value in
Eq. (16), on the basis of the part we did evaluate, Eq. (14).
This error is presently negligible in comparison with
unknown higher-order effects and we neglect it in the
numerical analysis.
We note that the magnitude of the numerical coefficient in

Eq. (15) is much smaller than in the previous order, see
Eq. (2). This smallness may have complicated the exper-
imental fit [15,16]. Our final result (16) has opposite sign but
similar magnitude to the fitted result [15,16] b50ðfitÞ ¼
−4.0ð5.1Þ. The difference between central values is 1.7 times
the error assigned to the fit. Of course, the fit includes VP
effects that we have not considered, but the known VP
contributions are predominantly positive [25] and increase
our discrepancy with the fit. On the other hand, the fit was
done before the Oðα4ZÞ light-by-light scattering effect was
computed [27]; including it may improve the agreement [38].
How does the new correction in Eq. (15) influence the

determination of the electron mass? In the case of the
carbon ion, the relative size of the change in g is 2 × 10−12.
The atomic electron mass is directly proportional to g so
this change increases me by the same relative amount, well
below the current error of 3 × 10−11 [15,16], in absolute
terms, by about 10−15 atomic mass units.
This stability of the electron mass should not be taken

for granted. Partial results such as Eq. (8) correspond to
relative shifts as large as 5 × 10−11, larger than the current
uncertainty in me. They have, however, been canceled by
other effects such as gSE;Lamb in Eq. (5).
In Table I we summarize results for hydrogenlike helium,

carbon, and silicon ions. The first line corresponds to
Breit’s formula (1). The second line includes additionally
all known corrections preceding this work, as given in
Ref. [16]: finite nuclear size [39], one-loop QED correc-
tions obtained by combining numerical and analytical
computations [22,26,37,40–48], two-loop QED corrections
evaluated up to order α4Z [27,46,47], higher order terms for
diagrams with vacuum polarization insertions [25], three
and more QED loops up to order α2Z [3], recoil and radiative
recoil [49–51] (see also Ref. [52]), nuclear polarizability
[53] and susceptibility [54], as well as leading weak [55]
and hadronic effects [56,57].
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For carbon and silicon the theoretical error in the second
row of Table I is dominated by the finite nuclear size
effects, whose error is respectively δg ¼ 7 × 10−13 and
δg ¼ 31 × 10−12. For helium, the main uncertainty comes
from the poorly known one-loop corrections extrapolated
from numerical computation.
We estimate the remaining error due to still missing higher

order terms by the leading logarithm ðα=πÞ2α6Zln3α−2Z . In
carbon and silicon, this logarithmic term exceeds other
uncertainties as well as our correction. It also exceeds the
uncertainty estimated in Ref. [16], where for Si ion the error
was 139 × 10−12.
It may seem ironic that after all the effort of computing

Δb50 our predictions for g have larger uncertainties than
before our work. We believe however that this conservative
treatment of unknown higher orders is necessary.
In Ref. [15], b50 was fitted and the higher-order terms

were neglected. This procedure raises some concerns since
the next term b63 is logarithmically enhanced. For small Z,
that enhancement may overshadow the b50 term. Yet, with
experimental results available only for carbon and silicon it
was impossible to constrain that higher-order term. Now
that the b50 term is at hand, one can fit the logarithmically
enhanced term b63 while neglecting parametrically sup-
pressed terms starting from b62.
In this way, our result will help derive full benefit from

future measurements of g factors, an effort we admire and
encourage.
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