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Physicists at the Large Hadron Collider (LHC) rely on detailed simulations of particle collisions to build
expectations of what experimental data may look like under different theoretical modeling assumptions.
Petabytes of simulated data are needed to develop analysis techniques, though they are expensive to
generate using existing algorithms and computing resources. The modeling of detectors and the precise
description of particle cascades as they interact with the material in the calorimeter are the most
computationally demanding steps in the simulation pipeline. We therefore introduce a deep neural network-
based generative model to enable high-fidelity, fast, electromagnetic calorimeter simulation. There are still
challenges for achieving precision across the entire phase space, but our current solution can reproduce a
variety of particle shower properties while achieving speedup factors of up to 100 000×. This opens the
door to a new era of fast simulation that could save significant computing time and disk space, while
extending the reach of physics searches and precision measurements at the LHC and beyond.

DOI: 10.1103/PhysRevLett.120.042003

Introduction.—High-precision modeling of the inter-
actions of particles with media is important across many
physical sciences, enabling and accelerating new findings.
Similar to complex weather or cosmological modeling, the
detailed simulation of subatomic particle collisions and
interactions, as captured by detectors at the LHC, is a
computationally demanding task which annually requires
billions of CPU hours, constituting more than half of the
LHC experiments’ computing resources [1–3].
The Nobel-prize-winning Higgs boson discovery [4,5]

would not have been possible without extensive simulation.
Before its experimental observation, its fundamental proper-
ties, such as its mass, were unknown, but synthetic particle
collisions could be generated to simulate the outcome of
various measurements under different model assumptions.
Today, as several questions remain unanswered about the

nature of known particles (such as neutrinos) and hypo-
thetical ones (such as the supersymmetric partners of the
standard model particles), modern nuclear and particle
physics research continues to strongly depend on detailed
simulations for developing analysis techniques, interpreting
results, and designing new experiments.
Cutting-edge software libraries such as GEANT4 [6]

provide the backbone to construct complex detector

geometries and accurately model physical processes
and interactions happening at distance scales as small
as 10−20 m.
The shortcoming of this method is its computational

footprint. The high-precision description of electromag-
netic and nuclear processes that govern the evolution of
particle showers in calorimeters can require minutes per
event on modern computing platforms [7,8], making this
the most computationally expensive step in the simulation
pipeline. Because of the high simulation cost, significant
resources are also invested in storing generated data sets,
which can occupy petabytes of disk space.
This bottleneck becomes apparent at the scale at which

events need to be simulated to enable physics analyses at the
high luminosity phase of the LHC. The ATLAS and CMS
experiments are expected to observe about 108 Higgs boson
events [9], buried in ∼1017 background events [10,11].
Hundreds of billions of simulated collisions will be required
to reduce the Monte Carlo uncertainty and measure some of
the Higgs boson’s as yet unprobed properties.
Approximate calorimeter simulation techniques exist

[12–15], but they provide compromises that lie on different,
yet similarly suboptimal, parts of the accuracy-speedup
trade-off curve.
Full detector simulations are too slow to meet the growing

analysis demands; current fast simulations are not precise
enough to serve the entire physics program. We therefore
introduce a deep learning model, named CaloGAN, for a high-
fidelity fast simulation of particle showers in electromagnetic
calorimeters. Its goal is to be both quick and precise, by
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significantly reducing the accuracy cost incurred with
increased speedup. A fast simulation technique of this kind
also addresses the issue of data storage and transfer, as the
gained generation simplicity and speedup make real-time,
on-demand simulation a possibility.
Similar techniques have been tested in cosmology

[16,17], condensed matter physics [18], and oncology
[19]. However, the sparsity, high dynamic range, and
highly location-dependent features present in this application
make it uniquely challenging. In addition to enabling physics
analysis at the LHC, an approach similar to CaloGAN’s may be
useful for other applications in particle and nuclear physics,
nuclear medicine, and space science that require a detailed
modeling of particle interactions with matter.
Method.—To alleviate the computational burden of sim-

ulating electromagnetic showers, we introduce a method
based on generative adversarial networks (GANs) [20] in
order to directly simulate component readouts in electro-
magnetic calorimeters. GANs are an increasingly popular
approach to learning a generative model using deep neural
networks, and they have shown great promise in generating
clear samples from natural images [21].
Though the GAN formulation, by design, does not admit

an explicit probability density or explicit likelihood, we gain
the ability to sample from the learned generative model in a
efficient manner. The GAN training uses a minimax game-
theoretic framework and admits a function g as an artifact that
maps ad-dimensional latent vector, z ∼ pzðzÞ ∈ Rd to a point
in the space of realistic samples. We would like the implicit
density learned by g to be close to the distribution f that
governs the simulated data distribution. Since g is a neural
network, a forward pass to generate new samples is highly
efficient on modern computing platforms [22].
Previous work [23] investigated GAN-based methods for

jet images [24], which are similar to one-layer calorimeters
with square pixels (except that jet generators such as PYTHIA
[25] are much faster than GEANT4). This Letter addresses
the complexity introduced by modeling a realistic sampling
detector with heterogeneous longitudinal and transverse
segmentation. We exploit the location specificity of the
calorimeter and utilize weight locality at the model level.
We also follow the guidelines outlined in Ref. [23] in order to
deal with both high dynamic range and high sparsity levels.
Our neural-network architecture per calorimeter layer is a
function of the readout grid dimensionality, and it is
augmented with an attentional component [26] that provides
a mechanism to carry information from layer to layer [27].
This allows CaloGAN to model the physical sequential
dependence among the calorimeter layers.
To ensure the realism of the CaloGAN setup, we impose an

additional constraint to encourage the generator to produce
a given energy shower. That is, the learned, implicit
probability density function f needs to converge to the
hypothetical data generating function g for any initial
nominal energy E0, i.e., fðxjE ¼ E0Þ → gðxjE ¼ E0Þ for
all cases where E0 ∈ ½Emin; Emax�.

To encourage this to be well modeled, a physics-specific
loss component is introduced to penalize absolute deviation
between the nominal energy E0 and the reconstructed energy
Ê. A noteworthy subtlety is that this penalization scheme,
coupled with minibatch discrimination [28], invites the
network to learn the distribution of jE0 − Êj, a desirable
characteristic for a readily applicable practical system to
augment fast simulation. Such a formulation also encourages
conservation of energy through the generation process. The
simulation only includes models of energy deposition, not
digitization (a nonlinear effect that can violate reconstructed
energy conservation). The energy per layer includes the
contribution from inactive material (see below). Therefore,
aside from leakage beyond the calorimeter (relevant mostly
for charged pions), energy must be conserved and provides a
useful constraint on the generation.
Experimental results.—From a series of simulated show-

ers, CaloGAN is tasked with learning the simulated data
distributions of γ, eþ, and πþ generated by GEANT4 with
uniform energy spectrum [1,100] GeV, and incident
perpendicular to the center of a three-layer, hetero-
geneously segmented, liquid argon (LAr) calorimeter cube
of side length 480 mm. The training data set [29] is
represented in image format by three figures of dimensions
3 × 96, 12 × 12, and 12 × 6, each representing the shower
energy depositions per pixel in each calorimeter layer. The
energy per layer includes the active and inactive contribu-
tions. For calorimeter calibrations [30], e.g., it is important
to have the inactive component; in the future, one could add
separate layers for the inactive component or add a second
step for dividing the energy per layer into two components.
The flexible CaloGAN architecture allows for a straightfor-
ward extension to related detector geometries that have
more sampling layers or different cell sizes per layer [31].
Our analysis establishes that it is possible to generate

three-dimensional electromagnetic showers in a multilayer
sampling LAr calorimeter with uneven spatial segmenta-
tion while attempting to preserve spatiotemporal relation-
ships among layers.
For performance evaluation, we choose application-

driven methods focused on sample quality. A first
qualitative assessment is accompanied by a quantitative
evaluation based on physics-driven similarity metrics.
The choice reflects the domain specific procedure for
Monte Carlo–data comparisons. However, it is also impor-
tant to examine high-dimensional behavior because
CaloGAN is not anchored by parametrized models the
way traditional fast simulators are. While the adversarial
classifier provides some high-dimensional validation, we
also use particle classification performance. Visualization
and validation are still key challenges for multidimensional
generators parametrized by a neural network.
Qualitative evaluation.—The average calorimeter depo-

sition per voxel (Fig. 1) suggests that the learned generative
models of γ, eþ, and πþ showers capture aspects of the
underlying physical processes. For photon showers, for
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instance, the mean per-layer cell variations only show ∼4%
and ∼1% discrepancy in the first two layers, respectively
where most energy is deposited for e=γ. This level of
agreement is promising, but it is important to analyze more
than the mean energy pattern to fully study the strengths
and weaknesses of the proposed approach.
The CaloGAN-generated samples are checked for

adequate diversity and lack of direct memorization of
the GEANT4 samples used for training. The nearest (by
Euclidean distance) GEANT4 image is found for each of a
random selection of CaloGAN images in order to verify the
desired characteristics (Fig. 2). The samples show strong
inter- and intraclass diversity and no evidence of memori-
zation since the closest images do not look exactly the same.

Shower shape description.—Geometrically and physi-
cally motivated shower shape variables [32] are used as
further validation and introspection into the capabilities of
CaloGAN to adequately model and capture nonlinear func-
tional representations of the simulated data distribution
(Fig. 3). In fact, it is desirable for CaloGAN to recover the
target distribution of these 1D statistics.
The network is not shown any shower shape variables

(only pixel values) at training time—therefore, it is encour-
aging to note that CaloGAN recovers the simulated data
distribution for a variety of shower shapes across the three
particle types. However, certain features of some distribu-
tions are not well described. This is a challenge for the
future and will likely require improvements to the archi-
tecture and training procedure. Longer trainings of higher
capacity architectures have shown promise in rectifying
some of these issues.
Examining 1D statistics does not probe correlations

between shower shapes or higher dimensional aspects of
the probability distribution. One way to examine the full
shower phase space is to study classification performance,
as described in the next section.
Classification as a performance proxy.—When training a

six-layer, fully connected classification model on the 504-
dimensional pixel space of the concatenated representation
of shower energy depositions across all calorimeter layers,
no major classification degradation is observed for out-of-
domain learning when trained on the full simulation, i.e.,
when the network is trained on GEANT4 samples but
evaluated on CaloGAN samples. Specifically, although the
classification accuracy always reaches 99% when evaluating
performance on CaloGAN showers—which points to an
overdifferentiation among particle types in the CaloGAN data
set—in both eþ − γ and eþ − πþ discrimination tasks, the
evaluation of the network trained on GEANT4 images results
in no accuracy decrease in the former task (∼70%), and only
a 2% decrease in the latter (∼97% versus ≳99% accuracy),
when compared to the classifier tested on CaloGAN samples.
The stability of the accuracy metric implies that CaloGAN

succeeds at representing at least as much variation among
showers initiated by different particles as is necessary to
classify them using the same features in GEANT4. Training
on CaloGAN and testing on GEANT4 does show significant
degradation, indicating that the GAN is inventing new class-
dependent features or underrepresenting class-independent
features. While percent-level variations may be important for
some applications, using classification as a generator diag-
nostic is an important tool for exposing the modeling of
interclass shower variations.
Computational performance.—Directly generating

deposited energy per calorimeter cell rather than particle
dynamics renders the model’s time-complexity invariant to
nominal energy, whereas GEANT4 shower simulation run-
time increases significantly with higher energy. Therefore,
CaloGAN affords sizable simulation-time speedups com-
pared to GEANT4. All benchmarks are performed on Intel
Xeon® 2.6 GHz processors for CPU time and a single

FIG. 1. Average γ GEANT4 shower (top row), and average γ
CaloGAN shower (bottom row), with progressive calorimeter
depth (from left to right).

FIG. 2. Five randomly selected γ showers per calorimeter layer
from GEANT4 (top rows) and their five nearest neighbors (by
Euclidean distance) from a set of CaloGAN candidates.
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NVIDIA®K80 for GPU time. When simulating a single eþ
in a uniform energy range between 1 and 100 GeV, CaloGAN
isOð102Þ times faster than GEANT4 on both CPU and GPU.

However, when batching is utilized, the CaloGAN through-
put significantly improves—when batching of size 1024 is
allowed (not unrealistic given the embarrassingly parallel

FIG. 3. Comparison of shower shape variables and other variables of interest, such as the sparsity level per layer, for the GEANT4 and
CaloGAN data sets for eþ, γ, and πþ. See Ref. [33] for detailed definition.
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nature of electromagnetic showering), the per-eþ gener-
ation time isOð103Þ times faster on CPU andOð105Þ times
faster on GPU.
Outlook and future work.—This Letter demonstrates that

the generative adversarial network technology represents a
powerful new tool for efficient simulation. Our ability to
infuse physics domain knowledge into the neural network
documents the flexibility and extensibility of the method
for field-specific applications and explicit mismodeling
mitigation.
Prior to this work, the prospect of a GAN-based calorim-

eter simulation had generated considerable excitement
within the high energy physics community. The availability
and performance of CaloGAN has attracted further interest as a
concrete and publicly available demonstration of the power
and drawbacks of a GAN-based calorimeter simulation. In
addition to the applicability within individual experiments,
variations of CaloGAN are also being studied as a generic
tool for future GEANT software versions. While CaloGAN is
currently structured as a fast simulation tool, in the future it
could also be trained on test-beam data to replace or augment
a full simulation tool.
Future work will focus on incorporating the most recent

cutting-edge innovations from theGAN literature to stabilize
the training procedure and improve convergence to optimal
solutions [34–37]. While our primary effort will be to
improve and maintain this technique for event simulation
at the LHC, this neural-network approach retains generali-
zation power to other fields in which computationally
expensive simulation inhibits result productivity.
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