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We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides
with the classical one in the relevant limit. Our condition unifies all previously known definitions for
quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a
family of measures of non-Markovianity with clear operational interpretations, such as the size of the
memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.
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In classical probability theory, a stochastic process is the
collection of joint probability distributions of a system’s
state (described by the random variable X) at different
times, {P(Xy, te; Xp—1, ti—ts -3 X1, 113 X0, fg) ¥V k €N}
to be a valid process, these distributions must additionally
satisfy the Kolmogorov consistency conditions [1]. A
Markov process is one where the state X; of the system
at any time #; depends conditionally on only the state of the
system at the previous time step and not on the remaining
history. That is, the conditional probability distributions
satisfy

P(Xi, 15| Xy it -3 Xy to) = P(Xp | Xpmys tiey) - (1)

for all k. This simple-looking condition has profound
implications, leading to a massively simplified description
of the stochastic process. The study of such processes
forms an entire branch of mathematics, and the evolution of
physical systems is frequently approximated to be Markov
(when it is not exactly so). This is in part due to the fact that
the properties of Markov processes make them easier to
manipulate analytically and computationally [2].

Implicit in this description of a classical process is the
assumption that the value of X; at a given time can be
observed without affecting the subsequent evolution. This
assumption cannot be valid for quantum processes. In
quantum theory, a measurement must be performed to infer
the state of a system. And the measurement process, in
general, must disturb that state. Therefore, unlike its
classical counterpart, a generic quantum stochastic process
cannot be described without interfering with it [3]. These
complications make it challenging to define the process
independently of the control operations of the experi-
menter. From a technical perspective, a serious conse-
quence of this is that joint probability distributions of
quantum observables at different times do not satisfy the
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Kolmogorov conditions [1] and do not constitute stochastic
processes in the classical sense.

Nevertheless, temporal correlations between observables
do play an important role in the dynamics of many open
quantum systems, e.g., in the emission spectra of quantum
dots [5] and in the vibrational motion of interacting
molecular fluids [6]. Quantifying memory effects, and
clearly defining the boundary between Markovian and
non-Markovian quantum processes, represents an impor-
tant challenge in describing such systems.

Attempts at solving this problem tend to take a necessary,
but not sufficient, condition for a classical process to satisfy
Eq. (1) and extend it to the quantum domain. This has led to
a zoo of quantum Markov definitions, and accompanying
“measures” of non-Markovianity [7,8], that do not coincide
with Eq. (1) in the classical case [9]. Examples include
measures based on the monotonicity of trace-distance dis-
tinguishability [10], the divisibility of dynamics [11,12], how
quantum Fisher information changes [13], the detection of
initial correlations [14—20], changes to quantum correlations
or coherence [21,22], channel capacities and information
flow [23-26], and positivity of quantum maps [27-30].

All these methods offer valid ways to witness
memory effects. Unfortunately, however, they often lack
a clear operational basis. Moreover, different measures of
non-Markovianity agree neither on the degree of non-
Markovianity of a given process nor even on whether it is
Markovian [31]. Put another way, they each fail to quantify
demonstrable memory effects in some cases. These incon-
sistencies have led some to the conclusion that there can be
no unique condition for a quantum Markov process.

In this Letter, we use the process tensor framework,
introduced in an accompanying article [32], to demonstrate
that this conclusion is false. We first present a robust
operational definition for a quantum Markov process, which
unifies all previous definitions and, most importantly,
reduces to Eq. (1) for classical processes. We then go on
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to derive a family of measures for non-Markovianity which
quantify all detectable memory effects and which have a
clear operational interpretation.

Quantum stochastic processes.—Conventional
approaches to open quantum dynamics describe a process
solely in terms a system’s time-evolving density matrix p,,
which is related to the initial state of the system by a
completely positive trace-preserving (CPTP) map A,..
However, as has also been argued in the classical case
[33], a framework that captures non-Markovian effects
cannot be a simple extension of one which characterizes
memoryless processes. In order to describe the joint
probability distributions of multiple measurement out-
comes, and hence capture memory effects which appear
only in multitime correlation functions, we must go beyond
the paradigm of CPTP maps [34].

We consider a scenario where the role of the observer in
a stochastic process is made explicit: A series of control

operations A;r) act on the system at times ¢; (here, r labels
one of a set of operations that could have been realized,
with some probability, at that time). These can correspond
to measurements, unitary transformations, interactions with
an ancilla, or anything in between and are represented
mathematically by completely positive (CP) maps. As
implied above, their action need not be deterministic (for
example, in the case of different measurement outcomes),
but the average control operation applied at a given point

corresponds to a deterministic CPTP map A; = Z,Aﬁr).
The choice of CPTP map and its decomposition into

operations Aﬁ»r) is often referred to as an instrument, and
the latter can equivalently be thought of as a decomposition
of A; into Kraus operators. The entire sequence of control
operations at times {fy,1,...,1;_;} may, furthermore,
be correlated, and we denote it by A;_;.o (which is an
element of the tensor product of spaces of control
operations at each step). When the operations are uncorre-
lated, this can simply be thought of as the sequence
Ao = LA A AT,

In an accompanying article [32], we describe how a
process can be fully characterized by a linear and CP
mapping 7., called the process tensor, which takes a
sequence of operations to the density operator at a later
time: py = 7 .o[Ak—1:0]- 7.0 encodes all uncontrollable
properties of the process, including any interactions of the
system with its environment, as well as their (possibly
correlated) average initial state. When the control oper-
ations are nondeterministic, p; is subnormalized, with a
trace that gives the joint probability of applying those
operations. Any given process tensor is guaranteed to be
consistent with unitary dynamics of the system with a
suitable environment. If the process tensor, defined on any
set of time steps in an interval, and the control operations
all act in a fixed basis, then the description reduces to that
of a classical stochastic process as described in the

introduction. Interestingly, quantum stochastic processes
have been defined in a mathematically related way several
times in the past [39-41], without being widely adopted by
the open quantum systems community.

Our description, in terms of the process tensor, fully
contains the conventional one; doing nothing to the system,
represented by the identity map Z, is a perfectly valid
control operation, and, for a system initially uncorrelated
with its environment, 7 ;.o[Z®] = Ay.olpo). The main
achievement of the process tensor framework is to separate
“the process,” as dictated by nature, from an experimenter’s
control operations. In other words, the process tensor
describes everything that is independent of the choices
of the experimenter. Using this framework, we are now in a
position to present our main result.

Criterion for a quantum Markov process.—To clearly
and operationally formulate a quantum Markov condition,
we introduce the idea of a causal break, where the system’s
state is actively reset, dividing its evolution into two
causally disconnected segments. We then test for condi-
tional dependence of the future dynamics on the past
control operations. If the future process depends on the
past controls, then we must conclude that the process
carries memory and it is non-Markovian.

To formalize this notion, we begin by explicitly denoting
the state of the system at time step / as a function of
previous control operations: p; = p;(A;_;.o). Now, suppose
at time step k < [ we make a measurement (of our choice)

on the system and observe outcome r, which occurs with

probability p,((r); the corresponding positive operator is

denoted H,(:). We then reprepare the system into a known

state P,(f), chosen randomly from some set {P,(f)}. The
measurement and the repreparation at k break the causal
link between the past j < k and the future [ > k of the
system; more generally, any operation whose output is
independent of its input constitutes a causal break. If we let
the system evolve to time step /, its state will depend on the
choice and the outcome of the measurement at k, the
preparation Py, and the control operations from O to k — 1.
Therefore, we have a conditional subnormalized state
P = p,pl(P5f> \Hi’); A ,.0). where the conditioning argu-

ment is the choice of past measurement H,(:) and controls

{A_i.0}. The probability p, which also, in general,
depends on {A,_; .o}, is not relevant to whether the process
is Markovian or not; we are interested only in whether the
normalized state p; = p;(P\”|I1”; A;_;.o) depends on its
conditioning argument. This operationally well-defined
conditional state is fully consistent with conditional
classical probability distributions. However, it is very
different from the quantum conditional states defined
in Ref. [42].

Because of the causal break, the system itself cannot

carry any information beyond step k about Hg{r) or its earlier
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FIG. 1. Determining whether a quantum process is Markovian.
Generalized operations A;., are made on the system during a
quantum process, where the subscripts represent the time. At time

step k, we make a causal break by measuring the system with H;(r)

and repreparing it in randomly chosen state P,(:>

. The process is
said to be Markovian if and only if p, (P [TI\; Ay_y.0) = pi(P\)
at all time steps /, k, for all inputs P,(f>, measurements {Hgf) }, and

control operations {A;_;.q}

history. The only way p; could depend on the controls is if
the information from the past is carried across the causal
break via some external environment (see Supplemental
Material [43] for some examples). We have depicted this in
Fig. 1, with the memory as a cloud that transmits informa-
tion from the past to the future across the causal break. This
immediately results in the following operational criterion
for a Markov process.

Definition.—A quantum process is Markovian when
the state of the system p;, after a causal break at time
step k (with [ > k), depends only on the input state

P o (PO A1 0) =i (PE)) Y APY T A0}
and V [,k € [0,K].

Note that this definition is directly analogous to the
causal Markov condition for a discrete-time classical
stochastic evolution that allows for interventions [4]:
While the definition in Eq. (1) refers only to the system
state at different times, more modern descriptions of
(classical) stochastic processes in terms of their causal
structure allow for interventions between time steps.
Recently, and independently of this work, a generalization
of this kind of “Markovian causal modeling” has been
developed for quantum Markov processes [45].

From the definition, we have the following theorem.

Theorem.—A quantum process is non-Markovian iff
there exist at least two different choices of controls

(7 A0} and {11\"; A)_,,0}, such that after a causal
break at time step k, the conditional states of the system at
time step / are different:

(PO Arro) # 2 (PO A ). (2)
Conversely, if p; is constant for all linearly independent
controls, then the process is Markovian.

The proof, which relies on the linearity of the process
tensor, is given in Sec. A of Supplemental Material [43].

Identifying two controls that lead to different conditional
states may, in pathological cases, require testing Eq. (2)
for all possible (exponentially many) linearly independent
control operations, though the discovery of any pair of
control sequences that lead to an inequality in Eq. (2) is a
witness for non-Markovianity; this is directly analogous to
the problem of testing for correlations in a many-body state.
The implication of the theorem is that it is possible to
determine whether a process is Markovian in a finite
number of experiments.

Our theorem also has the appealing consequence that
quantum Markov processes give rise to classical ones.

Corollary.—Fixing a choice of instruments always leads
to a classical probability distribution satisfying Eq. (1) iff
the quantum process is Markovian according the definition
provided above.

Proof.—Fixing a choice of instruments means allowing

only one of a set of operations A;r)

such that Z,Aﬁ” is a CPTP map (the instrument may be

different at different time steps). As such, the trace of
the state at time k is the probability distribution

. 7 (r1) 4(ro)
P(ri—istiers-- o rl’l1,ro,f0)—trﬂk(¢4kk1l e AP AT,
where the r; can be treated as classical random

J
variables. For a Markov process, we have that

mm“ﬂ,zm””x4m pi( AL P =
pi(A; r’ ) |P 22 ;_)2) for any deterministic choice of prepa-
ration Pﬁ,_)z. By writing .A;r_'/'f) = ZSS/CEZ;Z)P;S_)Z ® Hﬁs_;
[46], it follows that P(rj_y,t;_y|...;r.1370.1)) =
P(rj_i ti—1|rj—2.tj—2) ¥ k> j > 0. From our theorem, if
the process is non-Markovian, then there is at least some
pair of control operations for which the inequality in
Eq. (2) is true. By choosing an instrument which acts
with these operations, one realizes a classical process with
P(ri_i tis|rjoa tias oo ros to) # P(rjoys tiog|rjza. t-2)
for some values of {r;}. n

This remedies an important issue with existing defini-
tions of quantum Markov processes, namely, that they fail
to classify classical stochastic processes correctly [7].
Instead, as discussed above, conventional approaches are
based on necessary, but not sufficient, conditions for a
classical process to be Markov. The above corollary
demonstrates that our definition corresponds to a necessary
and sufficient condition. Of course, those necessary con-
ditions are still satisfied by Markov processes in our
framework. In particular, we have the following lemma.

Lemma.—Markov processes are K divisible; i.e., they
can be written as a sequence of CPTP maps between the K
time steps on which they are defined.

Proof.—If the condition introduced in our definition is
satisfied, then p; depends only on the previous choice of

input P,iq_)

to act at each time step,

| for any k. By choosing from a complete set of

linearly independent inputs {P.E-D")}, quantum process
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tomography can be performed independently for each pair
of adjacent time steps. Since the dynamics between any two
time steps is free from the past (there is no conditioning on
prior operations), the resulting set of CPTP maps com-
pletely describes the dynamics. These maps can then be
composed to calculate the dynamics between any two time
steps. In other words, the dynamics between time steps
[ > k > jis described by maps Ay.;, A, and A;.;, with
the last map being the composition of the former
two: Alij = Al:koAkij' |

This means our result verifies the well-known hypothesis
that Markovian dynamics is divisible. However, the con-
verse of this statement does not hold, contrary to what is
often postulated [7]. That is, A;.; = Aj o Ay.; VI >k >
j €10, K] does not imply that the process is Markovian
according to our main theorem. In principle, there could be
multitime correlations between time steps that affect future
dynamics conditioned on past operations. In this light, the
theorem we present here can be seen as both a unification
and a generalization of previous theories of quantum non-
Markovianity, since all of these require non-Markovian
processes to be indivisible. This direct consequence of the
above lemma is encapsulated in the following remark.

Remark.—Any process labeled non-Markovian accord-
ing to the definitions given in Refs. [10-30] will be non-
Markovian according to our main theorem. The converse
does not hold.

In fact, because it contains information about the density
operator as a function of time, the process tensor formalism
could be used to explicitly calculate any of the measures
of non-Markovianity introduced in the above references.
In Sec. B of Supplemental Material [43], we give several
examples of non-Markovian effects which are not detected
by conventional approaches but which are detected in our
framework. The first manifests the discussion below the
above lemma, demonstrating that divisible (even CP-
divisible) dynamics can have memory. We also show
how the trace-distance definition of Markov processes
can fail to characterize non-Markovianity and that a
quantum process can be non-Markovian even when there
are no system-environment quantum correlations.

It is worth noting that all open quantum evolutions
generated by a time-independent system-environment
Hamiltonian are non-Markovian according to our main
theorem, when considering more than two time steps.
A similar point was also made in Ref. [47], albeit in the
context of dynamical decoupling. The strictness of the
operational Markov definition, however, does not render
the notion of non-Markovianity meaningless; on the con-
trary, it allows us to construct meaningful measures of
non-Markovianity.

Quantifying non-Markovianity.—One of the key features
of the process tensor formalism is the isomorphism
between a process 7., and a many-body generalized
Choi state Y.y. The correlations between subsystems in

T,.o encode the temporal correlations in the corresponding
process. As we prove in our lemma above, a Markov
process is divisible; i.e., it can be described by a sequence
of independent CPTP maps. The corresponding Choi state
will have correlations only between subsystems corre-
sponding to neighboring preparations and subsequent
measurements; it can be written as the tensor product
TG = Aot @ Aotk ® -~ ® Ao ® po,  Where
Ajyy.;j is the Choi state of the CPTP map between time
steps j and j + 1 and p, is the average initial state of the
process.

This observation allows us to define a degree of non-
Markovianity.

Proposition.—Any CP-contractive quasidistance D
between the generalized Choi state of a non-Markovian
process and the closest Choi state of a Markov process
measures the degree of non-Markovianity:

N i= min D[T ol TNY). (3)

Markov
Tk :0

Here, CP contractive means that D[®(X)||®(Y)] <
D[X]|Y] for any CP map ® on the space of generalized
Choi states, and a quasidistance satisfies all the properties
of a distance except that it may not be symmetric in its
arguments. Other quasidistance measures may also be used,
with different operational interpretations, but those which
are not CP contractive do not lead to consistent measures
for non-Markovianity [48]. If we choose relative entropy
[49] as the metric, then the closest Markov process is
straightforwardly found by discarding the correlations. This
measure of non-Markovianity has an operational interpre-
tation: Probgyfusion = €xp{—n/N} measures the probability
of confusing the given non-Markovian process for a
promised Markovian process after n measurements of
the Choi state. In other words, YMakoV represents a
Markovian hypothesis for an experiment that is really
described by Yy.o. If AV is large, then an experimenter
will very quickly realize that the hypothesis is false and the
model needs updating.

Furthermore, other meaningful definitions of non-
Markovianity can be derived from the properties of the
Choi state. For example, the bond dimension of the matrix
product representation of Y., indicates the size of the
system required to store the memory between time steps; it
is unity (no memory) only in the case of a Markov process.
This clearly has importance for the efficiency of numerical
simulations of complex quantum systems.

Discussion.—We have used the process tensor frame-
work to introduce an unambiguous condition for quantum
Markov dynamics. This condition is constructed in an
entirely operational manner, and it meaningfully corre-
sponds to the classical one in relevant settings. We have
then used this condition to derive a family of measures for
non-Markovianity, including one with a natural interpre-
tation in terms of hypothesis testing with a Markovian
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model. Our measure will therefore enable experimenters to
incrementally construct better models for a given system,
by accounting for nontrivial non-Markovian memory. By
means of the Trotter formula, we can also extend the
measure for non-Markovianity to continuous processes.

There are well-known methods to develop master equa-
tions for Markov processes. We can meaningfully quantify
the error associated with using such methods for non-
Markovian processes if we can bound their fidelity using
Eq. (3). This should be possible in many cases, since large
environments tend not to retain long-term memory. We
anticipate that most processes of physical interest will be
almost Markovian and the corresponding process tensor
should be highly sparse with a block-diagonal structure. In
fact, equipped with a suitable measure on the space of Choi
states, our proposition allows for quantitative statements
about typical non-Markovianity to be made, though we
leave this for future work.

Because it captures all operationally accessible memory
effects (and no more), the framework we have introduced in
this Letter enables the unambiguous comparison of non-
Markovianity between different systems. In particular, the
fact that it puts quantum and classical processes on the
same footing will allow for a meaningful quantification of
the advantages (or not) that quantum mechanics brings
when using memory as a resource.
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