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Discrete time crystals are a recently proposed and experimentally observed out-of-equilibrium
dynamical phase of Floquet systems, where the stroboscopic dynamics of a local observable repeats
itself at an integer multiple of the driving period. We address this issue in a driven-dissipative setup,
focusing on the modulated open Dicke model, which can be implemented by cavity or circuit QED
systems. In the thermodynamic limit, we employ semiclassical approaches and find rich dynamical phases
on top of the discrete time-crystalline order. In a deep quantum regime with few qubits, we find clear
signatures of a transient discrete time-crystalline behavior, which is absent in the isolated counterpart.
We establish a phenomenology of dissipative discrete time crystals by generalizing the Landau theory of
phase transitions to Floquet open systems.
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Introduction.—Phases and phase transitions of matter are
key concepts for understanding complex many-body phys-
ics [1,2]. Recent experimental developments in various
quantum simulators, such as ultracold atoms [3,4], trapped
ions [5,6], and superconducting qubits [7,8], motivate us to
seek for quantum many-body systems out of equilibrium
[9–11], such as many-body localized phases [12–17] and
Floquet topological phases [18–25].
In recent years,much effort has beendevoted to periodically

driven (Floquet) quantum many-body systems that break the
discrete time-translation symmetry (TTS) [26]. In contrast to
the continuous TTS breaking [27–29] that has turned out to be
impossible at thermal equilibrium [30,31], the discrete TTS
breaking has been theoretically proposed [32–36] and exper-
imentally demonstrated [37,38]. Phases with broken discrete
TTS feature discrete time-crystalline (DTC) order character-
ized by periodic oscillations of physical observables with
period nT, where T is the Floquet period and n ¼ 2; 3; � � �.
The DTC order is expected to be stabilized by many-body
interactions against variations of driving parameters. Note that
the system is assumed to be in a localized phase [33–37] or to
have long-range interactions [38–40]. Otherwise, the DTC
order only exists in a prethermalized regime [41,42] since the
system will eventually be heated to a featureless infinite-
temperature state due to persistent driving [43–45].
While remarkable progress is being made concerning the

DTC phase, most studies focus on isolated systems. Indeed,
as has been experimentally observed [37,38] and theoreti-
cally investigated [46], the DTC order in an open system is
usually destroyed by decoherence. On the other hand, it is
known that dissipation and decoherence can also serve as
resources for quantum tasks such as quantum computation
[47] and metrology [48]. From this perspective, it is natural
to ask whether the DTC order exists and can even be

stabilized in open systems [49]. Such a possibility has
actually been pointed out in Ref. [41], but neither a detailed
theoretical model nor a concrete experimental implemen-
tation is presented.
In this Letter, we propose a concrete open-system setup for

realizing the DTC order by using a prototypical dissipative
model—a modified open Dicke model [50–52], which
describes a collective atom-photon interaction in the presence
of interaction modulation and photon loss. This model is
relevant to cavity QED systems based on cold atoms [53–56]
and circuit QED systems based on superconducting qubits
[57–63]. As schematically illustrated in Fig. 1, the DTC order
manifests itself through periodic switch-on and switch-off of a
sufficiently strong atom-photon coupling. For the cavity QED

FIG. 1. Cavity and circuit QED setups for realizing the DTC
order. In the first (second) half of a Floquet period T, we switch
on (off) the coupling λ between photons and (artificial) atoms.
For sufficiently large λ, almost persistent DTC order in the
stroboscopic dynamics of a local observable is expected for an
ensemble of a large number of atoms in an optical cavity, while
transient DTC behavior can be observed for few superconducting
qubits coupled to a microwave transmission line. Here κ denotes
the loss rate of (microwave) photons.
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case, we consider the thermodynamic limit and find unex-
pectedly rich dynamical phases as the detuning parameter is
varied (see Fig. 2). For the circuit QED case, we examine a
deep quantum regime with few qubits to find a clear transient
DTC behavior even for two qubits, a minimal setup of
superradiance [60]. We also discuss a phenomenological
model that demonstrates the exponentially long lifetime of
the DTC order. These predictions should be testable in light of
the state-of-the-art experimental developments in atomic,
molecular, and optical physics.
Modulated open Dicke model.—We consider N identical

two-level atoms in a single-mode cavity. Neglecting the
atomic motional degrees of freedom, the dynamics of the
system can be described by the open Dicke model [64]:

dρ̂t
dt

¼ LðλÞρ̂t ¼ −i½ĤðλÞ; ρ̂t� þ κD½â�ρ̂t;

ĤðλÞ ¼ ωâ†âþ ω0Ĵz þ
2λ
ffiffiffiffi
N

p ðâþ â†ÞĴx; ð1Þ

where D½â�ρ̂≡ â ρ̂ â† − 1
2
fâ†â; ρ̂g, â is the annihilation

operator of the photon field, Ĵμ ≡ 1
2

P
N
j¼1 σ̂

μ
j (μ ¼ x, y, z) is

the collective atomic pesudospin operator, and ω, ω0, λ,
and κ are the optical frequency, the atomic frequency, the
coupling strength, and the photon-loss rate, respectively.
It is known that, in the thermodynamic limit and when λ

exceeds λc ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0=ωÞðω2 þ κ2=4Þ

p
, the open Dicke

model exhibits a phase transition that breaks the Z2

symmetry characterized by the parity operator P̂≡
eiπ(â

†âþĴzþðN=2Þ) [52,54]. For λ > λc, we can construct an

exact period-doubling Floquet dynamics as follows:
Starting from one of the symmetry-broken steady states
ρ̂ss, in the first-half period, the dynamics is governed by
Eq. (1), so ρ̂ss stays unchanged by definition. In the second-
half period, we perform the parity operation on the system,
so that the other steady state ρ̂0ss ¼ P̂ρ̂ssP̂ is obtained at
the end of the Floquet period. If we observe the system
stroboscopically at tn ¼ nT, we should find ρ̂ss (ρ̂0ss) for
even (odd) n.
If the period doubling is robust against imperfection such

as the deviation of the evolution in the second-half period
from the parity operation, we can identify it as a DTC order.
A straightforward way to introduce such imperfection is to
switch off the atom-photon coupling in the second-half
period. That is, we modulate λ in Eq. (1) periodically as

λtþT ¼ λt ¼
�
λ 0 ≤ t < T

2
;

0 T
2
≤ t < T:

ð2Þ

In the resonant (ω ¼ ω0 ¼ ωT ≡ 2π=T) and isolated
(κ ¼ 0) case, the state evolution during the second half
of the period generates the parity operator up to an
unimportant global phase, i.e., P̂ ¼ e−iðT=2ÞĤð0Þþðiπ=2ÞN . If
we introduce a detuning between ω and ω0 as

ω ¼ ð1 − ϵÞωT; ω0 ¼ ð1þ ϵÞωT; ð3Þ

we can control the degree of imperfection by ϵ. Note that
there is always a nonunitary imperfection due to photon

FIG. 2. Dynamical phase diagram (top), typical stroboscopic dynamics (middle), and stroboscopic trajectories (bottom) of the atomic
pseudospin for atom-photon coupling λ ¼ 1 and photon-loss rate κ ¼ 0.05. Top: As the detuning ϵ [see Eq. (3)] is varied, five different
dynamical phases emerge: thermal (T, red), symmetric period doubling (normal DTC order, SD, blue), limit-cycle pair (LC, orange),
period sextupling (S, purple), and asymmetric period doubling (AD, magenta). The phase boundaries are marked in white with
resolution 10−3. Middle: Typical stroboscopic dynamics of jμ ≡ hĴμi=N [μ ¼ x (solid blue), y (dashed orange), z (dotted black)] for the
last 30 periods of the entire 5000-period evolution. Bottom: Full stroboscopic phase-space-point trajectories (light blue) and those of the
last 200 periods (purple) projected on the pseudospin Bloch sphere.
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loss even for ϵ ¼ 0. For simplicity, we set ωT ¼ 1 in the
following discussion.
Dynamical phases in the thermodynamic limit.—In the

thermodynamic limit N → ∞, the relative fluctuation in a
local observable becomes negligible and the semiclassical
approach is justified [65–67]. In terms of the scaled
variables x≡ hâþ â†i= ffiffiffiffiffiffiffiffiffiffi

2Nω
p

, p≡ ihâ† − âi= ffiffiffiffiffiffiffiffiffiffiffiffi
2N=ω

p

and j≡ ðjx; jy; jzÞ with jμ ≡ hĴμi=N (μ ¼ x, y, z), the
semiclassical dynamics governed by Eq. (1) reads [68]

dj
dt

¼ ðω0ez þ 2λt
ffiffiffiffiffiffi
2ω

p
xexÞ × j;

dx
dt

¼ p −
κ

2
x;

dp
dt

¼ −ω2x −
κ

2
p − 2λt

ffiffiffiffiffiffi
2ω

p
jx: ð4Þ

Note that the Z2 symmetry is maintained, since Eq. (4) is
invariant under the simultaneous sign reversal of x, p, jx,
and jy. The dissipative phase transition [69] in the open
Dicke model now becomes a dynamical phase transition
known as the pitchfork bifurcation [66], where the original
unique attractor with x0 ¼ p0 ¼ jx0 ¼ jy0 ¼ 0 and jz0 ¼ 1

2

becomes unstable and two new stable attractors with
ðjx�; jy�; jz�Þ ¼ 1

2
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
; 0;−μÞ and ðx�;p�Þ¼

∓ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωð1−μ2Þ

p
=ðω2þκ2=4Þ�(λ;κ=2) (μ≡ λ2c=λ2) emerge

as the classical limits from ρ̂ss and ρ̂0ss, which are nothing
but the steady-state solutions to Eq. (1). To be specific, we
fix λ ¼ 1 and κ ¼ 0.05 in the following calculations and
choose the initial state to be the “þ” attractor.
We solve the nonlinear differential equation (4) up to

5000 periods by using the Runge-Kutta method for differ-
ent ϵ and map out the full dynamical phase diagram in
the top row of Fig. 2 [70]. We find the normal DTC phase
and the thermal phase, where the former respects the Z2

symmetry in which jx, jy, x, p reverse their signs after one
period, and the latter shows irregular trajectories that cover
some areas of the pseudospin sphere [or in the quadrature
(x-p) plane]. Furthermore, we find symmetric limit-cycle
pairs, where the steady orbit forms two closed loops in the
phase space, period sextupling, and asymmetric period
doubling, with jx, jy, x, p taking on two different values
that are not symmetric against inversion. In fact, we find
even richer dynamical phases for other κ, such as higher-
order period multipling and asymmetric limit-cycle pairs
[68]. These phases can unambiguously be diagnosed by a
measure of synchronization [71–73] and can systematically
be understood by employing bifurcation theory [74–79].
We note that the dynamics of a generalized time-

independent open Dicke model, which has an additional
Stark-shift term ðU=NÞĴzâ†â in HðλÞ in Eq. (1), has
thoroughly been studied in Ref. [66] on the basis of the
semiclassical analysis.While there are only single- (normal)
and double-attractor (superradiant) phases for U ¼ 0,

limit-cycle and multiple-attractor phases emerge for
U ≠ 0. In contrast, in this Letter, the richness of dynamical
phases arises from the time dependence of λ with U ¼ 0.
Another distinction is that in Ref. [66] the steady state picks
up one of the attractors or the unique limit cycle, whereas
in the present Letter the steady state goes around different
fixed points or limit cycles in a stroboscopic manner.
Transient DTC behavior in the deep quantum regime.—

Let us move on to the few-atom regime [N ∼Oð1Þ], which
is the case for circuit QED systems. We consider the
modulated open Dicke model with N ¼ 2. We demonstrate
that the interplay between strong coupling and dissipation
causes a DTC behavior for unexpectedly long periods even
in this deep quantum regime. By unexpectedly long we
mean that the DTC transient lasts much longer than the
decay time κ−1 ∼ 3T.
We employ the exact diagonalization approach to solving

the Floquet-Lindblad dynamics governed byEqs. (1) and (2)
under a truncation at 16 photons. Figure 3(a) shows the
obtained stroboscopic dynamics of the scaled angular
momenta jμ and quadratures x, p (inset) in the strong-
coupling regime, where κ ¼ 0.05, ϵ ¼ 0.1 and λ ¼ 1. The
initial state is chosen to be j ⇒i ⊗ j0i, where j ⇒i≡ ⊗N

j¼1

j →i is the eigenstate of Ĵxwith eigenvalueN=2ðN ¼ 2Þ and
j0i is the photon vacuum. We clearly see that jx and x start
oscillating with a period of 2T after t ∼ 5T, which persists
even at t ∼ 50T. This result shows that our strong-coupling

(d)

(a) (b)

(c)

FIG. 3. (a) Stroboscopic dissipative dynamics of the scaled
angular momenta of jx (solid), jy (dashed), and jz (dotted) in the
two-qubit Dicke model with κ ¼ 0.05, ϵ ¼ 0.1, and λ ¼ 1 (strong
coupling). The inset shows quadratures, x (dotted) and p (solid).
(b) Stroboscopic dynamics for isolated systems (κ ¼ 0, ϵ ¼ 0.1,
and λ ¼ 1) in the strong-coupling regime. (c) Stroboscopic
dissipative dynamics in the weak-coupling regime (κ ¼ 0.05,
ϵ ¼ 0.1, and λ ¼ 0.1). (d) Stroboscopic unitary dynamics in
the weak-coupling regime (κ ¼ 0, ϵ ¼ 0.1, and λ ¼ 0.1). Only
(a) shows a DTC transient. The initial state is always j ⇒i ⊗ j0i,
where j ⇒i is the eigenstate of Ĵx with eigenvalue N=2ðN ¼ 2Þ
and j0i is the photon vacuum.
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modulated open Dicke model features a DTC transient even
in the deep quantum regime before reaching the stationary
state. For the sake of comparison, we show in Fig. 3(b) the
stroboscopic dynamics for an isolated Dicke model (N ¼ 2,
κ ¼ 0, ϵ ¼ 0.1, λ ¼ 1) starting from the same initial state.
We can see that the expectation value of each observable
randomly fluctuates and does not have temporal order in
contrast to its dissipative counterpart.
We note that no DTC transient emerges in the weak-

coupling regime. Figure 3(c) shows the Floquet dynamics
for an open (κ ¼ 0.05) Dicke model with ϵ ¼ 0.1 and
λ ¼ 0.1. The low-frequency oscillation has a period around
T=ϵwhich is susceptible to detuning ϵ. This is similar to the
observation that the DTC order is fragile in noninteracting
spin systems [36,37]. A similar dynamics is found in a
weakly coupled isolated Dicke system (κ ¼ 0, ϵ ¼ 0.1, and
λ ¼ 0.1) as shown in Fig. 3(d). Thus, neither photon loss
nor strong coupling alone gives rise to the DTC transient.
Floquet-Lindblad-Landau theory.—With all the

obtained numerical results in mind, we now establish a
general phenomenology for such an open-system DTC. As
illustrated in Fig. 4(a), the eigenvalues of the Floquet-

Lindblad superoperator UF ≡ T e
R

T

0
dtLðλtÞ generally locate

inside the unit circle in the complex plane, except for the
steady state which always locates at 1. Even if the initial
state is a complex mixture of many eigenmodes, the state
will eventually be described by fewer modes due to an
exponential decay during time evolution. A semiclassical
picture of this process is the convergence to attractors.
When the state is described as a mixture of two eigenm-
odes, it can exhibit oscillatory DTC behavior with the
double period if the distinguishably long-lived mode other
than the steady state has a negative eigenvalue close
to −1 [68].
An important question is how the lifetime of this DTC

mode scales with N. A natural expectation is that it

becomes exponentially long with increasing N, since the
underlying dissipative phase transition features an expo-
nentially small damping gap [80]. However, it is highly
nontrivial to find whether this is the case even in a Floquet
open system. It turns out to be difficult to handle this
problem numerically in the modulated open Dicke model.
This difficulty emphasizes the importance of scalable
circuit-QED-based quantum simulation with up to tens
of qubits [81]. Nevertheless, we can gain qualitative
insights by considering a numerically tractable effective
theory for the photon field:

dρ̂t
dt

¼−i½ĤL(Ω2ðtÞ;Ω4ðtÞ); ρ̂t� þ κD½â�ρ̂t;

ĤLðΩ2;Ω4Þ ¼ωâ†â−
Ω2

4
ðâ†þ âÞ2þ Ω4

32N
ðâ†þ âÞ4: ð5Þ

These equations can be derived from the open Dicke model
(1) by adiabatically eliminating the atomic degrees of
freedom under specific conditions [68]. Remarkably,
Eq. (5) can be regarded as the Floquet-Lindblad generali-
zation of the scalar-field Landau theory in 0þ 1 dimension,
and it is thus expected to capture the general qualitative
features of a wide class of Floquet open systems in addition
to the Dicke model. In Fig. 4(b), we show the lifetime of the
DTC (longest-lived) and that of the second longest-lived
mode (except for the steady state) for a specific protocol
Ω4ðtÞ ¼ Ω2ðtÞ ¼ Ω2ðtþ TÞ, where Ω2ðtÞ ¼ 1.5ω for 0 ≤
t < π=ω and Ω2ðtÞ ¼ 0 for π=ω ≤ t < T ¼ ð2 − εÞπ=ω
with κ ¼ 0.05ω. We do find an exponential scaling of
the lifetime of the DTC order with respect to N and the
saturation of the lifetime of the second longest-lived mode.
Note that the lifetime of a one-dimensional many-body
localized DTC obeys the same exponential scaling in the
system size [82], although the mechanism of DTC order is
different [33–36].
Summary and outlook.—We have proposed a simple

scheme for realizing DTC order in cavity and circuit QED
systems via switching on and off of the atom-photon
coupling. In particular, we focus on the modulated open
Dicke model both in the thermodynamic limit and in the
deep quantum regime. In the former case, we find rich
dynamical phases. In the latter case, we show that the
interplay between dissipation and strong coupling gives rise
to a clear transient DTC behavior. We have demonstrated
an exponentially long lifetime of the DTC order in the
Floquet-Lindblad-Landau theory. These predictions have
direct experimental relevance [68].
Our model can readily be generalized by taking into

account the atomic motional degrees of freedom [83],
interactions between atoms [84], local decoherence, and
spontaneous emission [85–87]. In particular, our study
raises an intriguing question of whether an intrinsically
nonunitary DTC can possess absolute stability [82] against
arbitrary nonunitary perturbation. Further studies along this

(a) (b)

FIG. 4. (a) Typical Floquet-Lindblad spectrum of an open-
system DTC. The DTC mode and the steady state (SS) locate at
−1þ δ and 1, respectively, with δ ∼Oðe−cNÞ. The other modes
locate on a disk (shaded) with radius r < 1 for ∀N, so their
lifetime is bounded by a constant −T= ln r. (b) Finite-size scaling
for the lifetime τ ¼ −T= lnð1 − δÞ of the DTC and the second
longest-lived (SLL) modes in the Floquet-Lindblad-Landau
model (5) for ϵ ¼ 0.02 and −0.05.
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line should give valuable hints for realizing a persistent
DTC in the presence of realistic uncontrollable dissipation
and decoherence. Another direction of research is to
understand the Floquet-Lindblad spectra of other dynami-
cal phases shown in Fig. 1. We have already made some
progress on the asymmetric DTC behavior [68].
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