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The notion of mutual unbiasedness for coarse-grained measurements of quantum continuous variable
systems is considered. It is shown that while the procedure of “standard” coarse graining breaks the mutual
unbiasedness between conjugate variables, this desired feature can be theoretically established and
experimentally observed in periodic coarse graining. We illustrate our results in an optics experiment
implementing Fraunhofer diffraction through a periodic diffraction grating, finding excellent agreement
with the derived theory. Our results are an important step in developing a formal connection between
discrete and continuous variable quantum mechanics.
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Introduction.—The ability to measure a system in an
infinite number of noncommuting bases distinguishes the
quantum world from classical physics. Wave-particle dual-
ity and, more generally, the complementarity principle are
directly rooted in this feature of quantum mechanics.
Though one can measure a quantum system in several
distinct bases, uncertainty relations limit the amount of
information that can be obtained. It is well known that
projection onto an eigenstate of one basis reduces the
information that can be obtained through or inferred about
subsequent measurement in a different basis. The informa-
tion is minimum for mutually unbiased bases (MUBs)
[1,2], for which all outcomes of the second measurement
are equally likely, so that total uncertainty is always
substantial (the sharpest uncertainty relations [3]) and most
insensitive to input states [4]. MUBs play an important role
in complementarity [5], quantum cryptography [6] and
quantum tomography [7,8], are useful for certifying quan-
tum randomness [9], and for detecting quantum correla-
tions such as entanglement [10–12] and steering [13–20].
Quantum information encoding in high-dimensional sys-

tems harbors the potential for efficient quantum cryptography
[21–23] and interesting fundamental studies [24,25]. A
number of modern day implementations of high-dimensional
quantum systems rely on continuous variables (CV) encoded
in photonics systems. TheseCV [26] or hybrid [27] platforms
allow one to encode several bits per outcome. However, a
typical measurement device does not register a continuous
and infinite range of values, and it is thus necessary to
consider discretized measurements. A common approach is
the selection of a finite set of transverse spatial modes labeled
by discrete mode indexes [28–31], for which MUB mea-
surements are attainable by the use of phase holograms [8].

Free-space [32], multicore fibers [33], or on-chip [34] path
encoding, as well as time bin [35] are also interesting
techniques with potential for high dimensionality. These
methods, despite being useful, discard a fraction of available
modes and do not straightforwardly extend to the comple-
mentary (Fourier) domain of CVs. A different discretization
procedure is the coarse graining of the continuous degree of
freedom itself [36,37]. In this case, practical constraints such
as finite detector resolution, or limited measurement time and
sampling range, if not properly handled, can lead to false
conclusions in tasks such as entanglement detection and
cryptographic security [15,38,39].
The notion of quantum mechanical mutual unbiasedness

seems rather well established. In particular, two orthonormal
bases jaii and jbji, i;j¼0;…;d−1, in a finite-dimensional
Hilbert space (of dimension d) are mutually unbiased if and
only if jhaijbjij ¼ 1=

ffiffiffi
d

p
for all i, j (MUB condition) [40].

This definition (for finite d) can be extended to deal
with—so-called—mutually unbiased (nonprojective [41])
measurements [42]. For continuous variables, such as a
conjugate pair formed by position and momentum, mutual
unbiasedness is encoded in the relation jhxjpij ¼ 1=

ffiffiffiffiffiffiffiffi
2πℏ

p
[43]. One might suspect that coarse graining preserves the
original unbiasedness of continuous variables. We shall
explain below why this is not the case for standard coarse
graining, and further construct a set of coarse-grained
mutually unbiased measurements of finite cardinality. The
latter property may, in principle, allow for a conceptual
relationship between CV and finite dimensional quantum
mechanics. We demonstrate our results in an optics experi-
ment exploring the transverse position and momentum of a
paraxial light field as conjugate CVs. The proposed coarse
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graining is implemented and mutual unbiasedness is
observed for measurement dimensionality up to d ¼ 15.
Our coarse-graining model, in contrast to most of the
discretization methods mentioned above, does not rely on
the selectionof a subspaceof all availablemodes anddelivers
theMUBs in complementary domains. Thus, mutual unbias-
edness in high-dimensional measurements is achieved with-
out the assumption that operations [44,45] will not transfer
the photon state out of the relevant subspace.
Unbiased coarse-grained measurements.—In the most

basic scenario, one can describe experimental outcomes
of coarse-grained position-momentum measurements by
means of the projectors [15,16,36,37] (k, l ∈ Z):

Ak ¼
Z

kþΔ

k−Δ
dxjxihxj; Bl ¼

Z
lþδ

l−δ
dpjpihpj; ð1Þ

with j� ¼ j� 1=2. The two parameters Δ and δ are the
coarse-graining widths, which can be understood as reso-
lutions of the detectors used in an experiment. Looking at
the explicit representations it is quite easy to deduce that
TrðAkBlÞ ¼ Δδ=2πℏ. The fact that the overlap does not
depend on indices k and l suggests that the operators in
Eq. (1) are interrelated in a special way—so-called Accardi
complementarity [46]. Note, however, that the constant-
trace condition alone is not even enough to assure that
original variables are connected by the Fourier transforma-
tion [47]. On the other hand, a quantum state localized in
one coarse-grained basis, for instance, ψðxÞ ¼ 1=

ffiffiffiffi
Δ

p
for

jxj ≤ Δ=2 (and 0 elsewhere) that is covered by A0, is not
evenly spread with respect to the second one (here given by
fBlg), but instead decays like the sinc function.
In the last observation, we actually pointed out that the

pair of projective measurements (1) does not meet the most
natural definition of mutual unbiasedness in discrete set-
tings that can be formulated as follows. Given a pure state
jΨi and two sets of d > 1 projective measurements, fΠkg
and fΩlg, we define the usual probabilities qkðΨÞ ¼
hΨjΠkjΨi and plðΨÞ ¼ hΨjΩljΨi. The measurements are
mutually unbiased if for all jΨi and all k0, l0 ¼ 0;…; d − 1:

qkðΨÞ ¼ δk0k ⇒ plðΨÞ ¼ d−1; ð2aÞ
plðΨÞ ¼ δl0l ⇒ qkðΨÞ ¼ d−1: ð2bÞ

Again inwords, whenever the state is localized in one set, it is
evenly spread in the second one. The case with countably
infinite sets of projectors [like those in Eq. (1), which,
however, do not fit into the definition] shall be understood
in the limit d → ∞. Extension to a genuinely continuous
scenario would require subtle modifications of the definition;
this case is, however, beyond our interest here. Whenever the
pairs of projective measurements are unitarily equivalent, a
single requirement is sufficient. Quite obviously, this defi-
nition correctly reproduces the MUB condition.
As standard coarse graining (1) does not satisfy the

definition (2), we consider now another type of coarse
graining. In general, one can define projectors

Πk ¼
Z
R
dxMkðx − xcen;TxÞjxihxj; ð3aÞ

Ωl ¼
Z
R
dpMlðp − pcen;TpÞjpihpj; ð3bÞ

where M is a “mask function” modeling the detector
aperture, Tx and Tp play the role of coarse-graining widths,
and we allow extra displacement parameters xcen and pcen
representing positioning degrees of freedom setting the
masks’ origins. We now define d-dimensional periodic
coarse graining (PCG) by considering the mask functions
(j ¼ 0;…; d − 1)

Mjðz;TÞ ¼
�
1; js ≤ zðmodTÞ < ðjþ 1Þs
0; otherwise

; ð4Þ

as periodic square waves with spatial period T and bin
width s ¼ T=d, as illustrated in Fig. 1. The periodic
functions (4) define d > 1 orthogonal regions covering
the whole CV domain:

P
d−1
k¼0Πk ¼ I ¼ P

d−1
l¼0 Ωl. This

model of coarse graining thus assigns a discrete (and finite)
measurement outcome “j” to the detection of the quantum
particle’s CV degree of freedom “z” within the region
defined by the mask function Mjðz;TÞ. In Ref. [48], a
variant of the periodic masks (4) was used as an analyzer to
test for spatial entanglement of photon pairs.
We are ready to establish the main theoretical result.

If [49]

TxTp
2πℏ

¼ d
m
; m ∈ N s:t: ∀n¼1;…;d−1

mn
d

∉N; ð5Þ

then the projective measurements (3) with the mask
function (4) fulfill Eq. (2), thus being mutually unbiased.
Since for m0d ≤ m ≤ ðm0 þ 1Þd with m0 ∈ N one finds
mn=d ¼ m0nþ ½mðmod dÞ�n=d, the last condition in
Eq. (5) is in general concerned with m0 ≔ mðmod dÞ. Of
special significance is the case m0 ¼ 1, since the discussed
condition is valid for all dimensions. On the other hand,
m0 ¼ 0 is always excluded, which fully corresponds to the
fact that for m ¼ m0d the left part of Eq. (5) describes
communing periodic sets [50–52], i.e., ½Πk;Ωl� ¼ 0, for
all k, l. In this particular case there is neither room for
unbiasedness nor complementarity.
To gain more intuition we observe that, for instance, if

d ¼ 7 then all values of 0 < m0 < d are allowed since 7 is a
prime number, while for d ¼ 10 only m0 ¼ 1, 3, 7, 9 fulfill
the right condition (note that n ¼ 4, 6, 8 all rule out
m0 ¼ 5). For d ¼ 9, we obtain m0 ¼ 1, 2, 4, 5, 7, 8, while

FIG. 1. Periodic coarse-graining scheme for d≡ T=s ¼ 4. A
diagram of the mask function (4) for j ¼ 0 is also represented.
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for d ¼ 8 we getm0 ¼ 1, 3, 5, 7. Let us finally mention that
xcen and pcen play no role for unbiasedness. Before
proceeding further, note that the first part of Eq. (5) can
also be put in equivalent forms: (a) sxsp ¼ 2π=md,
(b) Txsp ¼ 2π=m, or (c) sxTp ¼ 2π=m.
To show Eq. (2a), we represent [53] the probability

associated with Ωl in terms of the position autocorrelation
function [54]:

plðΨÞ ¼
1

d
þ

X
N∈Z=f0g

1 − e−ð2πiN=dÞ

2πiN
eiNφl

×
Z
R
dxψ�ðxÞψðxþ NτpÞ; ð6Þ

with ψðxÞ ¼ hxjΨi, φl ¼ −2πl=d − pcenτp=ℏ and
τp ¼ 2πℏ=Tp. Assume first that qkðΨÞ ¼ δk0k for an arbi-
trary k0. This means that ψðxÞ is localized within a single
periodic mask, so that the autocorrelation term, which due to
Eq. (5) equals ψ�ðxÞψðxþmNTx=dÞ, does not vanish only
when mN=d is an integer. Because of the further require-
ment, however, mN=d ∈ Z if and only if N=d ∈ Z. But in
this special case the factor 1 − e−ð2πiN=dÞ becomes equal to 0,
so that all terms in the sum in Eq. (6) do vanish, leaving the
bare contribution 1=d. The same type of derivation applies to
Eq. (2b). To conclude, the set defined in Eq. (3) is mutually
unbiased in a finite-dimensional manner, even though traces
of all products ΠkΩl are clearly infinite.
Experimental setup.—The formal analogy between para-

xial optics and nonrelativistic quantum mechanics [55]
allows us to experimentally verify the condition of mutual
unbiasedness (5) using a simple optical setup implementing
Fraunhofer diffraction through a multiple slit aperture. As
sketched in Fig. 2, a paraxial HeNe laser beam diffracts
from preparation to measurement sites placed at the front
and back focal planes of a Fourier transform lens system,
respectively. At both sites, we use a spatial light modulator
(SLM) to display amplitude spatial masks modeled

according to our periodic coarse graining (4) along the
vertical direction. The illumination of the preparation SLM
by the collimated laser beam with Gaussian transverse
profile generates a periodically modulated beam whose
intensity distribution at the measurement SLM is that of an
interference pattern produced by a periodic diffraction
grating, as illustrated in Fig. 2. The intensity distribution
of this diffracted beam is then analyzed by periodic spatial
masks displayed on the measurement SLM [56].
In our experiment, the conjugate CV stand for the

transverse position (x) and momentum (p) of the paraxial
light field. As the transverse spatial variables at preparation
and measurement sites are related via Fourier transform,
the positions at the measurement SLM correspond to the
transverse momentum component at the preparation SLM.
Denoting T p as the physical periodicity (units of length) of
the spatial masks applied to the measurement SLM, we
translate it to momentum domain as Tp ¼ Tp=α, where the
constant α ¼ feλ=ð2πÞ relates to the optical Fourier trans-
form (we set ℏ ¼ 1): fe ¼ 100 mm is the effective focal
length; λ ¼ 633 nm is the light field wavelength. In terms
of the physical periodicities and experimental parameters,
condition (5) reads TxTp ¼ feλd=m.
Results.—Let us denote by jΨki ¼ N −1

k ΠkjΨi the pro-
jections of the state onto the kth mask (Nk is a normali-
zation constant), which by construction are eigenstates
of Πk. We perform the experiment with the building
function ψðxÞ≡ hxjΨi a Gaussian given by the transverse
profile of the laser beam at the preparation SLM: ψðxÞ ∝
exp½−x2=ð4σ2Þ�, with σ ¼ 520 μm.
Our strategy to investigate PCG measurements is the

experimental reconstruction of the probabilities pkl ≡
plðΨkÞ. The relevant distribution to evaluate unbiasedness
is the conditional probability pljk ¼ pkl=

P
lpkl that the

outcome of PCGmeasurements in themomentum domain is
l, given that jΨkiwas prepared. As a quantifier of unbiased-
ness, we calculate the entropy of the distribution pljk:

Ek ¼ −
Xd−1
l¼0

pljklog2ðpljkÞ: ð7Þ

Hence, unbiasedness is verified whenever Ek ¼ log2ðdÞ. In
our setup, these outcome probabilities are obtained from the
overall light power,Wkl, transmitted through the preparation
and measurement spatial masks: pljk ¼ Wkl=

P
lWkl. The

transmitted light is monitored by an optical power meter
(Newport 2931-C) set to output themeanvalue of 1000power
measurements performed over a total sampling time of 1 s.
The upper part of Fig. 2 presents an example of the

prepared beam intensity distribution and its corresponding
Fraunhofer diffraction pattern. For this preparation, we used
the periodic spatial mask k ¼ 0, with bin width sx ¼ 48 μm
and d ¼ 4, thus yielding a periodicity of Tx ¼ 192 μm.
Following our notation, the prepared transverse field
distribution corresponds to a quantum wave function
ψ0ðxÞ ¼ hxjΨ0i. This field distribution is optically Fourier

SLM
PREPARATION

SLM
MEASUREMENT

FOURIER TRANSFORM

125mm 125mm 250mm 250mm 200mm 200mm POWER
METER

FIG. 2. Sketch of the experimental setup used for the demon-
stration of unbiased coarse-grained measurements. The trans-
verse field distribution of a laser beam is prepared and measured
using periodic spatial masks displayed on SLMs. Preparation and
measurement sites are connected via optical Fourier transform.
The light power transmitted through preparation and measure-
ment spatial masks is monitored with an optical power meter.
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transformed and the resulting Fraunhofer diffraction pattern
is subjected to PCG measurements at the measurement site.
The entropy E0 associated with the outcome probabilities
plj0 is given in Fig. 3(a) as a function of the PCGperiodicities
in momentum domain. Experimental data are shown as
turquoise points while the solid orange line represents a
theoretical prediction based on numerical calculations. The
momentum periodicities Tp ¼ 2πd=ðTxmÞ arising from the
unbiasedness condition (5) are indicated as dashed vertical
lines. It is clear that for these specific values of the periodicity
the entropy assumes either a maximum (whenm is odd) or a
minimum (when m is even). In Fig. 3(b), we show the
measured distributions plj0 associated with the data points
lying closer to these periodicities. For d ¼ 4, the unbiased-
ness condition (5) is fulfilled for m0 ¼ 1, 3, as can be
evidenced from the flat probability distribution plj0 ≈ 1=d
achieved for these periodicities.
The results presented in Fig. 3 illustrate unbiased PCG

measurements of dimension 4 for the single preparation
jΨ0i. In order to fully demonstrate Eq. (2a), we also run
our experiment with complementary preparations jΨki
(k ¼ 0;…; 3). The extreme values obtained for the entropy
Ek are indicated as error bars in Fig. 3(a). We find the
values Ek ≥ 1.9953� 0.0008 ∀ k when using the perio-
dicities associated with m ¼ 1 and 3, thus demonstrating
the full unbiasedeness relation (2a) between preparation
and measurement outcomes for our periodic coarse grain-
ing. The presented error of 8 × 10−4 is due to fluctuations

of the transmitted light power over 1000 measurements.
This error is much smaller than the data points in Fig. 3(a).
Finally, we note that the unitarity of the Fourier trans-
formation (in mathematical terms, projection valued mea-
sures for position and momentum are unitarily equivalent
[47]) and the functional dependence of condition (5) on the
product of periodicities TxTp (so they can be swapped),
exempt the experimental verification of Eq. (2b) for the
demonstration of mutual unbiasedness.
A few remarks on the resolution limitations of coarse-

graining measurements are in order. The momentum perio-
dicity Tp in plot 3(a) was scanned at the resolution limit of
our setup: consecutive data points relate to bin widths
differing by only 8 μm (a single pixel of our SLM). This
is the reason as to why the features shown in the theoretical
prediction for smaller Tp could not be demonstrated exper-
imentally. Theoretically, Eq. (5) provides an infinite number
of possibilities for unbiasedness, but only a few are reach-
able in practice. The condition with m ¼ 1 (valid for all d)
offers the best trade-off between experimentally attainable
resolutions in the position and momentum domains. In our
optical setup, this trade-off implies the physical periodicity
in the measurement SLM given by Tp ¼ feλd=Tx, which for
d ¼ 4 and Tx ¼ 192 μm yields Tp ≈ 1319 μm. The focal
length fe serves as a magnification parameter that can be
used to adjust the momentum resolution at the cost of
changing the detection range. Thus, a compromise between
momentum resolution and a sensible detection range (the
height of our SLM) also comes into play. An experimental
investigation of this resolution trade-off in our optical setup
is provided in the Supplemental Material [53].
As a final remark, the measurements shown in Fig. 4

illustrate a particular feature of Eq. (5). Keeping the
preparation bin width at the constant value of
sx ¼ 48 μm, we looked for the optimal periodicities while
varying the PCG measurement dimensionality from d ¼ 3
up to 15. In this case, the condition for the optimal
periodicity is independent of the dimension parameter d:
T opt

p ¼ feλ=sx ≈ 1319 μm. The experimental uncertainty in
its determination (the error bars) is dictated by the SLM

0 0.04 0.08 0.12 0.16
0

0.5

1.0

1.5

2.0

Experimental Data

Theory (numerics)

(b)

(a)

FIG. 3. (a) Entropy plot associated with outcomes’ probabilities
of PCG measurements with d ¼ 4 and Tx ¼ 192 μm, as a
function of Tp. (b) Examples of measured outcome distributions
plj0 for the selected data points shown in plot (a). Unbiasedness
(plj0 ≈ 1=d) is shown for data points I and III.

3 5 7 9 11 13 15
1000

1200

1400

1600

FIG. 4. Measured optimal periodicity in momentum domain
when using mask functions with constant bin width sx ¼ 48 μm
for the preparation of d-dimensional PCG. The theoretically
predicted value is T opt

p ¼ feλ=sx ≈ 1319 μm.
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pixel size: errorðT opt
p Þ ¼ d × 8 μm. Our measurements

demonstrate close agreement with the theoretical predic-
tion, as seen in Fig. 4. We obtain jEk − log2ðdÞj≲ 0.004 for
all data points, thus demonstrating unbiased coarse-grained
measurements for dimensionality up to 15.
Discussion.—We have shown how one can recover the

condition of mutual unbiasedness in coarse-grained mea-
surements of continuous variable systems. Periodic “mask”
functions were used to define projective measurements in
position and momentum variables, and these were shown to
be mutually unbiased for particular combinations of perio-
dicities. What other types of mask functions can form the
MUBs and how our findings complement the periodic-
commuting case treated in its generality [57] are open
questions on the theory side. Relevant, practically oriented
questions also point towards the role of evenvalues ofm0 and
applications in interference experiments [58,59]. Though
(nonperiodic) coarse-grained observables have been used in
quantum key distribution [60], application of the present
scheme requires a careful security analysis, and is thus an
open question for the future. Another interesting question is
the use of our results in quadrature measurements, for which
PCG might be implementable using auxiliary qubits, as in
measurement of the parity operator [61]. Nontrivial coarse-
graining structures have also been considered in the context
ofBell inequalities violations [62–64]. Nonetheless, a formal
demonstration of mutual unbiasedness was still missing in
the general framework of CVmeasurements. We believe our
resultsmay provide amethod to formally connect continuous
and discrete variable quantum mechanics.
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